
Semantic MapNet: Building Allocentric Semantic
Maps and Representations from Egocentric Views

Vincent Cartillier,1 Zhile Ren,1 Neha Jain,1 Stefan Lee,2,3 Irfan Essa,1,4 Dhruv Batra,1,3

1 Georgia Institute of Technology, 2 Oregon State University, 3 Facebook AI Research, 4 Google Research

Abstract

We study the task of semantic mapping – specifically, an em-
bodied agent (a robot or an egocentric AI assistant) is given
a tour of a new environment and asked to build an allocentric
top-down semantic map (‘what is where?’) from egocentric
observations of an RGB-D camera with known pose (via lo-
calization sensors). Towards this goal, we present Semantic
MapNet (SMNet), which consists of: (1) an Egocentric Visual
Encoder that encodes each egocentric RGB-D frame, (2) a
Feature Projector that projects egocentric features to appro-
priate locations on a floor-plan, (3) a Spatial Memory Tensor
of size floor-plan length×width× feature-dims that learns to
accumulate projected egocentric features, and (4) a Map De-
coder that uses the memory tensor to produce semantic top-
down maps. SMNet combines the strengths of (known) pro-
jective camera geometry and neural representation learning.
On the task of semantic mapping in the Matterport3D dataset,
SMNet significantly outperforms competitive baselines by
4.01− 16.81% (absolute) on mean-IoU and 3.81− 19.69%
(absolute) on Boundary-F1 metrics. Moreover, we show how
to use the neural episodic memories and spatio-semantic allo-
centric representations build by SMNet for subsequent tasks
in the same space – navigating to objects seen during the tour
(‘Find chair’) or answering questions about the space (‘How
many chairs did you see in the house?’).

1 Introduction
Imagine yourself receiving a tour of a new environment.
Maybe you visit a friend’s new house and they show you
around (‘This is our living room, and down here is the
study’). Or maybe you accompany a real-estate agent as
they show you a new office space (‘These are the cubicles,
and down here is the conference room’). Or someone gives
you a tour of a mall or a commercial complex. In all these
situations, humans have the ability to form episodic mem-
ories and spatio-semantic representations of these spaces
(O’keefe and Nadel 1978). We can recall which spaces we
visited (living room, kitchen, bedroom, etc.), what objects
were present (chairs, tables, whiteboards, etc.), and what
their relative arrangements were (the kitchen was combined
with the open plan living room, the bedroom was down the
hallway, etc.). We can also leverage these representations to

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Project Then
Segment

Segment Then
Project

`

Semantic MapNet
(Encode, Project, Segment)

RGB

D 15

20
512

Egocentric Image Features

i, j, d → x, y, z

Pose x, y, z,)

CNN
L
S
T
M

Spatial Feature Map @ t-1

Project To Map

x, y, z

x, y, z

Spatial Feature Map @ t

CNN

RGB

D 15

20
512

Egocentric Image Features

i, j, d → x, y, z

Pose x, y, z,)

CNN
L
S
T
M

Spatial Feature Map @ t-1

Project To Map

x, y, z

x, y, z

Spatial Feature Map @ t

RGB

D 15

20
512

Egocentric Visual Encoder

i, j, d → x, y, z

Pose *, +|-

CNN
L
S
T
M

Spatial Memory Tensor @ t-1

Project To Map

u, v

u, v

Spatial Memory Tensor @ t

At each observation step: Extract and project egocentric features & Update spatial memory

Top-down Semantic
Segmentation

i,j

t+1

(a) Agent
Trajectory

(b) Egocentric
Observations

(c) Spatial
Memory

(d) Top-down
Segmentation

t

t+1

t

t+1

t

Feature Projector

Map Decoder

Figure 1: Semantic Mapping: (a) While moving through a 3D
space (with known pose), our agent converts egocentric RGB-D
observations (b) to representations in an allocentric spatial mem-
ory (c), which is used to predict top-down semantic segmentations
(d) showing ‘what objects are where’ from a birds-eye view.

perform new tasks in these spaces (e.g. navigate to the re-
stroom via a path shorter than the one demonstrated on the
tour). Of course, human memory is limited in time and in
the level of metric detail it stores (Epstein et al. 2017). Our
long-term goal is to develop super-human AI agents that can
build rich, accurate, and reusable spatio-semantic represen-
tations from egocentric observations. This capability is an
essential building block for autonomous navigation, mobile
manipulation, and egocentric personal AI assistants.

In this paper, we study the specific task of creating an al-
locentric top-down semantic map of an indoor space, illus-
trated in Fig. 1. An embodied agent (a virtual robot or an
egocentric AI assistant) is equipped with an RGB-D cam-
era with known pose (extracted via localization sensors such
as GPS and IMU). The agent is provided a tour of a new
environment, represented as a trajectory of camera poses
(shown in Fig. 1(a)). The task then is to produce an allo-
centric top-down semantic map (shown in Fig. 1(d)) from
the sequence of egocentric observations with known pose
(shown in Fig. 1(b)). Our experiments focus on top-down
semantic segmentation, i.e. each pixel in the top-down map
is assigned to a single class label (of the tallest object at that
location on the floor, i.e. the one visible from the top-down
view). Our produced semantic maps are metric – each pixel
corresponds to a 2cm × 2cm grid on the floor – as opposed
to topological maps (Fraundorfer, Engels, and Nister 2007;
Nagarajan et al. 2020) that lack spatial information (scale,
position) and do not support our downstream tasks of in-
terest. Importantly, while the semantic top-down map is our

primary ‘product’, our goal is to build neural episodic mem-
ories and spatio-semantic representations of 3D spaces in
the process. Representations that enable the agent to easily
learn and accomplish subsequent tasks in the same space –
navigating to objects seen during the tour (‘Go to a chair’)
or answering questions about the space (‘How many chairs
did you see in the house?’).

t+1

(a) Agent
Trajectory

(b) Egocentric
Observations

(c) Spatial
Memory

(d) Top-down
Segmentation

t

t+1

t

Project Then
Segment

Segment Then
Project

`

Semantic MapNet
(Encode, Project, Segment)

RGB

D 15

20
512

Egocentric Image Features

i, j, d → x, y, z

Pose x, y, z,)

CNN
L
S
T
M

Spatial Feature Map @ t-1

Project To Map

x, y, z

x, y, z

Spatial Feature Map @ t

CNN

RGB

D 15

20
512

Egocentric Image Features

i, j, d → x, y, z

Pose x, y, z,)

CNN
L
S
T
M

Spatial Feature Map @ t-1

Project To Map

x, y, z

x, y, z

Spatial Feature Map @ t

RGB

D 15

20
512

Egocentric Image Features

i, j, d → x, y, z

Pose *, +|-

CNN
L
S
T
M

Spatial Feature Map @ t-1

Project To Map

u, v

u, v

Spatial Feature Map @ t

At each observation step: Extract features & Update Map

Top-down Semantic
Segmentation

i,j

t+1

t

Figure 2: A spectrum of approaches to top-down semantic seg-
mentation: (Right) perform egocentric semantic segmentation and
project labels; (Left) Construct an overhead imagery (project pix-
els) and perform semantic segmentation; (Middle) SMNet: encode
pixels, project features, decode labels.

What should we project? Approaches to top-down or
overhead semantic segmentation can be arranged on spec-
trum illustrated in Fig. 2. At one end (on the right), are
approaches (Sengupta et al. 2012; Sünderhauf et al. 2016;
Maturana et al. 2018a) that first perform egocentric seman-
tic segmentation and then use the known camera pose and
the depth of each pixel to project labels to an allocentric
map. In our experiments, we find that this results in ‘label
splatter’ – any mistakes in the egocentric semantic segmen-
tation made at the depth boundaries of objects get splattered
on the map around the object. This problem can be slightly
assuaged via image processing heuristics (median filtering).
However, the fundamental issue persists even after those
‘bells and whistles’.Quantitatively, this results in high pre-
cision but low recall of the object segmentation. At the other
end of the spectrum (on left) are approaches that operate on
a single overhead image (projecting pixels if needed) and
perform semantic segmentation on this image (Singh et al.
2018; Máttyus et al. 2015). While this may be appropriate
for aerial or geospatial imagery, converting multiple high-res
egocentric images into a single bird’s eye view is wasteful
and throws out significant visual information. Qualitatively,
we find that this results in coarse segmentations; object sizes
are under-estimated, small objects missed entirely. Quantita-
tively, we see high precision but low recall.

We pursue an approach called Semantic MapNet (SM-
Net) that lies in the middle of this spectrum. Specifically,
as shown in Fig. 2 (middle), SMNet extracts visual features
in the egocentric reference frame, but predicts semantic seg-
mentation labels in the allocentric reference frame. This is
accomplished by projecting egocentric features to appropri-
ate locations in an allocentric spatial memory, and using this
memory to decode a top-down semantic segmentation. This
design addresses both deficiencies in prior work – (a) the
spatial-memory-to-map decoder in SMNet is based on trans-
posed convolutions and learns to smooth out any ‘feature
splatter’; and (b) the egocentric feature extractor in SMNet
operates directly on high-res egocentric images and is able
to recognize and segment small objects that may not be vis-

ible from a bird’s eye view.
We conduct experiments on the photo-realistic scans of

building-scale environments (homes, offices, churches) in
the Matterport3D dataset (Chang et al. 2017) using the Habi-
tat simulation platform (Savva et al. 2019) (giving us ac-
cess to agent state, navigation trajectories, RGB-D render-
ings, etc.). We choose the Matterport3D dataset because it
provides semantic annotations in 3D, the spaces are large
enough to allow multi-room traversal by the agent, and the
use of a 3D simulator allows us to render RGB-D from
any viewpoint, create top-down semantic annotations, and
study embodied AI applications in the same environments.
Quantitatively, on the task of semantic mapping, SMNet
significantly outperforms the aforementioned baselines by
4.01− 16.81% on mean-IoU and 3.81− 19.69% (absolute)
on Boundary-F1 metrics, which balance precision and recall.

SMNet combines the strengths of (known) projective
camera geometry with neural representation learning, and
address our key desideratum – learning rich, reusable spatio-
semantic representations. We demonstrate via extension ex-
periments how representations built by SMNet from a sin-
gle tour of an environment can be reused for ObjectNav and
Embodied Question Answering (Das et al. 2018).

2 Related Work
Spatial Episodic Memories for Embodied Agents. Build-
ing and dynamically updating a spatial memory is a pow-
erful inductive bias that has been studied in many em-
bodied settings. Most SLAM systems perform localization
by registration to sets of localized keypoint features (Mur-
Artal and Tardós 2017). Many recent works in embodied AI
have developed agents for navigation (Anderson et al. 2019;
Beeching et al. 2020; Gupta et al. 2017; Georgakis, Li, and
Kosecka 2019; Blukis et al. 2018) and localization (Hen-
riques and Vedaldi 2018; Parisotto and Salakhutdinov 2017;
Zhang et al. 2017) that build 2.5D spatial memories con-
taining deep features from egocentric observation. Like our
approach, these all involve some variation of egocentric fea-
ture extraction, pin-hole camera projection, and map update
mechanisms. However, these works focus on spatial memo-
ries as part of an end-to-end agent for a downstream task and
do not evaluate the quality of the generated maps in terms of
environment semantics directly. nor study how segmentation
quality affects downstream tasks.
Semantic Mapping from Egocentric Observations. Pre-
dicting top-down semantic segmentation from egocentric
observations has been studied in the context of robotics as
the semantic SLAM (or semantic mapping) problem (Rosi-
nol et al. 2019; Maturana et al. 2018b; Grinvald et al. 2019;
McCormac et al. 2017). We compare with a recent represen-
tative algorithm in this family as our baseline (Grinvald et al.
2019). Further work has examined the use of semantic la-
bels as an intermediate step in an end-to-end model (Gordon
et al. 2018; Chaplot et al. 2020a) or to derive supervision to
reward agent trajectories (Chaplot et al. 2020c). These works
have not evaluated the quality of the semantic map and in-
stead focused on downstream tasks. All these works follow
the Segment-then-Project paradigm – invoking a segmenta-

RGB

D 15

20
512

Egocentric Image Features

i, j, d → x, y, z

Pose x, y, z, 𝜃

CNN
L
S
T
M

Spatial Feature Map @ t-1

Project To Map

x, y, z

x, y, z

Spatial Feature Map @ t

CNN

RGB

D 15

20
512

Egocentric Image Features

i, j, d → x, y, z

Pose x, y, z, 𝜃

CNN
L
S
T
M

Spatial Feature Map @ t-1

Project To Map

x, y, z

x, y, z

Spatial Feature Map @ t

RGB

D 240

320
64

Egocentric Visual Encoder

i, j, d → x, y, z

Pose 𝐾,𝑅|𝑇

CNN
G
R
U

Spatial Memory Tensor @ t-1

Project To Map

u, v

u, v

Spatial Memory Tensor @ t

At each observation step: Extract and project egocentric features & Update spatial memory

Top-down Semantic
Segmentation

i,j

Feature Projector

Map Decoder

Figure 3: At each step in a trajectory, SMNet updates an allocentric map based on egocentric observations. Egocentric RGB-D observations
are represented using a CNN encoder and the feature vectors are projected to the spatial memory (left). Memory cells are updated by a GRU to
incorporate this new information (middle). The spatial memory can then be decoded by to perform top-down semantic segmentation (right).

tion network on the 2D observations and then projecting la-
bels into an allocentric map. In contrast, our findings suggest
it is more effective to project intermediate features and allow
an allocentric decoder to produce the final segmentation.

Closely related to our approach is a line of work focus-
ing on volumetric recurrent memory architectures for 3D
semantic segmentation of small objects (Cheng, Wang, and
Fragkiadaki 2018; Tung, Cheng, and Fragkiadaki 2019).
Like Semantic MapNet, these approaches project interme-
diate features into a spatial memory and then decode seg-
mentations from that structure. However, these works fo-
cus on relatively small objects due to the large memory
constraints of 3D volumetric memory. For example, a 25m
× 20m footprint indoor environment with standard ceiling
height (2.75m) would require storing 171.875 million fea-
ture vectors at 2cm3 resolution – or a total of 176 gigabytes if
features are 256 dimensional as in our experiments. Seman-
tic MapNet is designed to work on the large environments
(average footprint of 24.5m × 23.4m) of the Matterport3D
dataset, and achieves state of the art results.

Recently, Pan et al. examined cross-view semantic seg-
mentation – i.e. the task of predicting a local top-down se-
mantic map from a single first-person observation (Pan et al.
2020). Unlike SMNet, their proposed approach does not in-
clude projective geometry – instead learning a small network
to transform first-person views to top-down feature maps
– nor does it accumulate observations over a trajectory. In
contrast, we addresses the problem of building a global top-
down semantic map based on a trajectory.
Simulation Platforms and Embodied Vision Tasks. The
creation of large 3D datasets (Chang et al. 2017; Armeni
et al. 2016) and simulators (Savva et al. 2019; Anderson
et al. 2018; Kolve et al. 2017; Xia et al. 2018) has spurred
development in Embodied AI. Recent work examines inter-
active agents navigating in the environment to answer ques-
tions (Das et al. 2018; Wijmans et al. 2019; Gordon et al.
2018), reach desired locations (Wijmans et al. 2020), and
infer the shape of occluded objects (Yang et al. 2019). We
study a fundamental building block for these tasks – build-

ing top-down semantic maps of indoor environments.

3 Semantic MapNet (SMNet)
We now describe our proposed approach for semantic map-
ping, called Semantic MapNet (SMNet), in detail. As shown
in Fig. 3, SMNet consists of the following modules:
– An Egocentric Visual Encoder that converts each ego-

centric RGB-D frame into a Rw×h×d feature tensor, rep-
resenting the content of each image region.

– A Feature Projector that uses the known camera pose
and the depth of each pixel to project these egocentric fea-
tures at appropriate locations on a floor-plan,

– A Spatial Memory Tensor of size floor-plan length ×
width × feature-dims that accumulates these projected
egocentric features. Repeated observations of the same
spatial locations are incorporated through a learned recur-
rent model operating at each location.

– A Map Decoder that uses the accumulated memory ten-
sor to produce top-down semantic segmentations.

Problem Setup and Notation. Let I denote an RGB-D im-
age. We assume a known camera – specifically, let K be
the camera intrinsic matrix, and [R | t] denote the camera
extrinsic matrix (rotation and translation needed to convert
world coordinates to camera coordinates). Thus, an agent’s
trajectory through an environment is represented as a se-
quence of egocentric RGB-D observations I(1), . . . , I(T) at
known poses [R | t](1), . . . , [R | t](T). Strictly speak-
ing, our approach does not require knowing camera pose in
world coordinates at all times – all we need are successive
pose transformations [R | t](t→t+1), a problem known in
robotics and computer vision as egomotion estimation. The
entire approach could be defined in terms of the camera co-
ordinates at time t = 1. However, for sake of clarity of the
exposition, we describe our approach with global pose.

Let S denote the top-down semantic segmentation. Each
pixel in S represents a 2cm×2cm cell in the environment
and is labeled with the class of the tallest object in that cell
(i.e. the object visible from above). At each time t, let M (t)

denote the memory tensor incorporating all the information
observed in the trajectory so far, and let Ŝ(t) denote the seg-
mentation predicted using M (t). Note that test-time evalua-
tion is done using Ŝ(T), but during training our agent pre-
dicts and receives supervision for intermediate predictions
along the trajectory Ŝ(1), . . . , Ŝ(T).

There are a number of coordinate systems in this discus-
sion which we define now for clarity – pixel positions in the
egocentric RGB-D image I are indexed with i, j, and the
depth at this pixel is denoted with di,j (or d when its clear
from context which pixel is being talked about). A 3D point
in world coordinates is denoted with x, y, z. For notational
simplicity, we follow the standard convention in computer
graphics – negative Y -axis aligned gravity in the world co-
ordinate system. Finally, cells in the memory tensor are in-
dexed with u, v. Next, we describe each module in detail.
Egocentric Visual Encoder. Each egocentric frame I(t)

gives a local glimpse of the environment – providing infor-
mation about objects and their locations in the current view.
To represent these, we encode each RGB-D frame using
RedNet (Jiang et al. 2018), a recently proposed architecture
for semantic segmentation of indoor scenes. In principle,
one may choose any standard image encoder network for se-
mantic segmentation such as Mask-RCNN (He et al. 2017).
We chose RedNet simply because the network structure has
proven to be effective for parsing indoor environments and
pre-trained models (learned on SUN-RGBD dataset (Song,
Lichtenberg, and Xiao 2015)) are publicly available. We ini-
tialize with these pre-trained weights and fine-tune RedNet
on our dataset. We conducted several experiments by ex-
tracting egocentric features at different stages in the RedNet
network (encoder, last layer, scores, softmax, one-hot en-
coded labels). We found that encoding each RGB-D frame
with the last layer RedNet features yields to the best per-
formances. The output of this encoder for image I(t) is an
egocentric feature map F (t) ∈ R240×320×64 with each of
the 240 × 320 cells storing a 64-d feature. We upscale this
tensor to the resolution of the depth image (480×640) with
bilinear interpolation, resulting in each pixel i, j having an
associated feature F

(t)
i,j ∈ R64 and depth value di,j .

Feature Projector. To project an egocentric feature F
(t)
i,j to

the spatial memory, we must (a) shoot a ray from the cam-
era center through the image pixel (i, j) out to a depth di,j
to get a 3D point in the camera coordinate system, (b) con-
vert from camera to world coordinates to get the correspond-
ing (x, y, z), and then (c) project it to cell indices u, v in
the memory tensor. With known camera pose and intrinsics,
these transformations for the standard pinhole camera can
be written compactly as:

[
x
y
z

]
= di,jR

−1K−1

[
i
j
1

]
− t,︸ ︷︷ ︸

(Inverse) Pinhole Camera Projection

and

uv0
1

 = Pv

xyz
1


︸ ︷︷ ︸

Orthographic Projection
(1)

where Pv is a known orthographic projection matrix con-

verting 3D world coordinates to 2D memory cell indices.
When several points are projected to the same index in M (t),
we retain the one with the maximum height in the world co-
ordinates. This results in a set of projected features F (t)

u,v .
Spatial Memory Tensor M is a 3D tensor of size U ×
V × 256. Each grid cell (u, v) stores a 256-d feature vec-
tor and corresponds to a 2cm×2cm area on the floor-plan,
which is the same spatial resolution as the segmentation S.
The memory must be updated at each time step to incorpo-
rate new observations. Specifically, given the current mem-
ory M (t−1) and a new observation F

(t)
u,v for cell u, v, we

compute M
(t)
u,v = GRU(F

(t)
u,v,M

(t−1)
u,v) where M

(t−1)
u,v is

the hidden state and F
(t)
u,v the input for the GRU. This GRU

can learn to accumulate incoming observations. Notice that
the GRU parameters are shared spatially, i.e. for all (u, v).
Importantly, this independent updating of modified memory
cells (as opposed to something like a ConvGRU) ensures
that observations only affect local regions of the memory –
keeping previously observed areas stable.
Map Decoder. The memory tensor M (t) is used to decode a
top-down semantic segmentation map. We use a simple ar-
chitecture consisting of five convolutional layers with batch
norm and ReLU activations. As the memory M and segmen-
tation S are the same spatial resolution, no learned upsam-
pling or downsampling is involved in this decoding.

Together, these modules form SMNet and implement the
basic principle of ‘encode pixels, project features to a spatial
memory, decode labels’. Notice that all modules and thus the
entire architecture is end-to-end differentiable.

4 Matterport Semantic-Map Dataset
For our experimental evaluation, we need 3D environments
for an agent to traverse that have dense semantic segmenta-
tions. While our extension experiments involve agent-driven
navigation, our core task of semantic mapping is defined
w.r.t. a fixed trajectory provided to the agent as input. The
more challenging task of simultaneous semantic mapping
and goal-driven navigation is left for future work.

Given this fixed-trajectory setting, our task has the input
(but not output) specification of video segmentation – both
taking a sequence of input images along a trajectory. We
choose the Matterport3D scans (Chang et al. 2017) with the
Habitat simulator (Savva et al. 2019) over video segmenta-
tion datasets for a number of reasons – Matterport3D pro-
vides semantic annotations in 3D (as opposed to 2D annota-
tions in video datasets), the spaces are large enough to allow
multi-room traversal by the agent (as opposed to (Dai et al.
2017; Nathan Silberman and Fergus 2012)), and the use of
a 3D simulator (as opposed to (Geiger, Lenz, and Urtasun
2012; Cordts et al. 2016)) allows us render RGB-D from any
viewpoint, create top-down semantic annotations, and study
embodied AI applications in the same environments.
Matterport3D Environments. Matterport3D dataset
(Chang et al. 2017) contains reconstructed 3D meshes
of 90 indoor environments (homes, offices, churches).
These meshes are densely annotated with 40 object
categories. Many of these are rare or would appear

mIoU =
40.33

mIoU =
39.16

mIoU =
37.48

mIoU =
31.57

mIoU =
36.60

mIoU =
28.35

mIoU =
14.55

mIoU =
28.28

Bird’s-eye view Ground Truth SMNet Seg. → Proj. Proj. → Seg.Semantic SLAM

void shelving dresser bed cushion fireplace sofa
table chair cabinet plant counter sink

Figure 4: Example semantic segmentation predictions. SMNet makes cleaner and more accurate predictions than the baseline approaches.

as thin lines in a top-down view (e.g. walls and cur-
tains); we focus on the 12 most common object cat-
egories: chair, table, cushion, cabinet,
shelving, sink, dresser, plant, bed,
sofa, counter, fireplace (sorted in descending
order by number of object instances). We treat all other
classes and background pixels as void class. We divide
multi-story environments in Matterport3D into separate
floors by manually refining floor dividers present in the
meta-data. This is not always possible given a single divid-
ing plane (e.g. split level homes), resulting in inaccurate
top-down maps – we discard such environments. Utilizing
the same data split as (Wijmans et al. 2019), we keep 85
unique floors in our dataset: 61 for training, 7 for validation,
and 17 for testing. See supplement for these splits.

Ground-Truth Top-down Semantic Segmentations. To
supervise our model, we need access to ground-truth top-
down semantic maps from these environments. These are
created by applying an orthographic projection for the 3D
mesh annotations in a similar manner to Eqn. 1 (right). In
this process we only project vertices labeled with one of the
12 kept object categories. The resulting ground-truth top-
down semantic maps are free from occlusions caused by
non-target objects. There will be cases where from the ego-
centric view the agent won’t be able to visualize the object
entirely either because it is occluded or the object is too high
(wall cabinet). In table 1 we report numbers on the Seg.
GT → Proj. experiment where the agent projects egocen-
tric ground-truth semantic labels. This will account for such
occlusion and set an upper-bound to our experiments.

Modal Maps and Viewing Frustum. We perform modal
top-down semantic segmentation (as opposed to amodal).
Specifically, the agent receives supervision on map cells it
has actually observed; it is not evaluated on hallucinating
unseen regions. We do this by projecting the viewing frus-

tum (i.e. region the agent can currently see) to the floor-plan
at each navigation step. We can then keep track of which
regions have been observed during a trajectory.
Navigation Paths. We assume that an agent’s path through
the environment is provided by some external policy – e.g.
a goal-oriented path or a general exploration policy – and
that we are constructing the map and memory opportunis-
tically from this experience. To simulate this behavior, we
manually record a navigation path through each floor using
the Habitat simulator (Savva et al. 2019). The action space is
move forward 10cm, and rotate left or right 9◦ . To encour-
age trajectories with high environment coverage, our human
navigation interface included the top-down RGB map with
agent position drawn. On average, agents move 2500 steps
in each environment. Note that this is an order of magni-
tude longer than most navigation trajectories in contempo-
rary works (Savva et al. 2019; Wijmans et al. 2020; Kadian
et al. 2019; Gordon et al. 2018; Chaplot et al. 2020b)
Training Samples. To train our model, we consider 20-step
navigation segments from these trajectories. Starting from
a random location on the trajectory, we step the agent for-
ward 20 steps along it, capturing the corresponding view-
points to mask the top-down semantic map. We generate 50
examples for each environment leading to 3050/350 train/val
training samples. This both greatly increases the number of
training instances and increases training speed by requiring a
smaller semantic memory tensor. At evaluation/testing time,
the agent builds the map from the entire trajectory.

5 Semantic Mapping Experiments
Baselines. As depicted in Fig. 2, there exists a spectrum of
methodologies for our task based on what is being projected
from egocentric observations to the top-down map – pixels,
features, or labels. Our approach stakes a middle-ground on
this spectrum – projecting egocentric features. We compare

Matteport3D (test) Replica
Acc mRecall mPrecision mIoU mBF1 Acc mRecall mPrecision mIoU mBF1

Seg. GT→ Proj. 89.49 ± 0.09 73.73 ± 0.06 74.58 ± 0.10 59.73 ± 0.09 54.05 ± 0.11 96.83 ± 0.07 83.84 ± 0.05 94.05 ± 0.06 79.76 ± 0.07 86.89 ± 0.04

Proj.→ Seg. 83.18 ± 0.07 27.32 ± 0.08 35.30 ± 0.13 19.96 ± 0.07 17.33 ± 0.08 81.25 ± 0.09 26.64 ± 0.12 41.50 ± 0.12 20.06 ± 0.09 19.08 ± 0.12

Seg.→ Proj. 88.06 ± 0.07 40.53 ± 0.09 58.92 ± 0.11 32.76 ± 0.07 33.21 ± 0.08 88.61 ± 0.09 48.11 ± 0.09 65.20 ± 0.11 40.77 ± 0.09 45.86 ± 0.12

Semantic SLAM 85.17 ± 0.08 37.51 ± 0.09 51.54 ± 0.15 28.11 ± 0.08 31.05 ± 0.12 88.30 ± 0.09 45.80 ± 0.08 62.41 ± 0.12 37.99 ± 0.09 46.71 ± 0.10

SMNet 88.14 ± 0.09 47.49 ± 0.11 58.27 ± 0.11 36.77 ± 0.09 37.02 ± 0.09 89.26 ± 0.10 53.37 ± 0.12 64.81 ± 0.09 43.12 ± 0.10 45.18 ± 0.14

Table 1: Results on top-down semantic segmentation on the Matterport3D and Replica datasets. Models have not be trained on Replica and
those results are purely transfer experiments. SMNet outperforms the baselines on mIoU and BF1 for Matterport3D and mIoU in Replica.

with approaches at either end and existing work:
– Project → Segment. As agents traverse the scene, the

observed RGB pixels are projected to the top-down map
using our mapper architecture – resulting in a top-down
RGB image of the environment. We train a model similar
to RedNet (Jiang et al. 2018) to decode the semantic map
directly from this top-down RGB image.

– Segment → Project. At the other extreme, agents per-
form semantic segmentation on each egocentric frame and
then project the resulting labels using our mapper archi-
tecture to create the top-down segmentation. The pro-
duced top-down semantic maps are post-processed us-
ing a median filter (3×3) to reduce the label splatter
noise caused by egocentric prediction errors around ob-
ject boundaries. In addition, we found experimentally that
down-sampling the egocentric resolution from (480×640)
to (120×160) helps reducing the impact of egocentric
errors on the top-down maps and leads to best perfor-
mances for this baseline. Any missed pixels in the ob-
served area of the top-down semantic map caused by this
down-sampling is filled using median filtering. We fine-
tune a RedNet (Jiang et al. 2018) model for this task. We
also present an oracle baseline that projects ground-truth
segmentations – Segment GT → Project. This experi-
ment sets an upper-bound of performances (perfect pre-
dictions being not possible due to occlusions)

– Semantic SLAM. We use VoxBlox++, an off-the-shelf
implementation of semantic SLAM (Grinvald et al. 2019)
where we replaced the object detection module with our
pre-trained RedNet model plus a hand-crafted instance
segmentation applied on-top of the semantic predictions
(connected components). The algorithm takes as input
RGB-D frames and simultaneously estimates agent’s pose
and constructs a point cloud of semantically labelled
points. We project the point cloud to a top-down segmen-
tation using the same mapping functions we described in
Sec. 3. For fairness, we provide the ground truth pose to
(Grinvald et al. 2019) at each time step.

In all experiments, detections 50cm over the agent’s camera
position are discarded. This prevents detecting ceilings.
Implementation Details We pretrain two RedNet (Jiang
et al. 2018) models for semantic segmentation in our setting
– one from egocentric RGB-D (Segment→Project) and an-
other from top-down RGB alone (Project→Segment). SM-
Net is initialized with the encoder from the egocentric Red-
Net. We use a single-layer GRU to update the spatial mem-
ory. SMNet is trained end-to-end under cross-entropy loss
using SGD with learning rate 1e−4, momentum 0.9, weight

decay 4e−4, and batch size 8 across 8 Titan XPs. Training
took 2-3 days. Back propagation is applied after 20 steps.
Evaluation Metrics. We report the entire range of evalua-
tion metrics for semantic segmentation: (a) the overall pixel-
wise labeling accuracy (Acc), (b) the average of pixel recall
or precision scores for each class (mRecall/mPrecision), (c)
the average of the intersection-over-union score of all object
categories (mIoU), and (d) the average of the boundary F1
score of all object categories (mBF1). mBF1 is countour-
based metric defined in (Csurka et al. 2013). mIoU and
mBF1 serve as our primary metrics.
Results. Table 1(left) shows a summary of the results
with bootstrapped standard error (see supplement for
category-level breakdowns). Fig. 4 shows qualitative results.
Project→Segment achieves low performance (mBF1 17.33,
mIoU 19.96) compared to the approaches that operate on
egocentric images prior to projection (either via segmenta-
tion or feature extraction). This suggests details lost in the
top-down view are important for disambiguating objects –
e.g. the chairs at the table in Fig. 4 (bottom) are difficult
to see in the top-down RGB and are completely lost by
this approach. Segment→Project performs significantly bet-
ter (mBF1 33.21, mIoU 32.76), but faces a problem with er-
rors in the egocentric predictions resulting in noise in the
top-down map. Semantic SLAM (VoxBlobx++) performs
worse than the Segment→Project baseline (mBF1 31.05,
mIoU 28.11). VoxBlox++ follows a segment-then-project
paradigm, making it prone to the same errors as the Segment
→ Project baseline. In addition, the data association mod-
ule of VoxBlox++ will sometimes group objects of different
categories (e.g. the two bottom chairs are grouped with the
table in Fig. 4). As our approach reasons over a spatial mem-
ory tensor, it can reason about multiple observations of the
same point – achieving mBF1 37.02, and mIoU 36.77. The
Segment GT →Project experiment sets an upper-bound of
mBF1 54.05, and mIoU 59.73. We also evaluated SMNet
on the replica dataset (Straub et al. 2019). Table 1 (right)
shows a summary of the results with bootstrapped standard
error. Similarly, SMNet performs best on the mIoU metric at
43.12. These results demonstrate that an approach which in-
terleaves projective geometry and learning can provide more
robust allocentric semantic representations.

6 Re-using Maps for Downstream Tasks
The map and spatio-semantic allocentric representation our
method constructs while exploring an environment provide
a rich description of the space. In this section, we ex-

Goal: Go to the closest bed Goal: Go to the closest chair

Ground Truth SMNet Ground Truth SMNet
Figure 5: Object Navigation: Visualization of paths found by A* using SMNet maps. Green and red squares indicate agent’s starting and
stopping locations. The grey color represents the floor pixels. The left example shows a case of success with high SPL = 0.8276 and the
example on the right shows a case of success with low SPL= 0.4282.

Bird’s-eye View Ground Truth SMNet

How many sofas are there? GT: 1 – Pred: 1
How many beds are there? GT: 2 – Pred: 3

Figure 6: Visualizations of MemoryQA

plore proof-of-concepts for various downstream embodied
AI tasks based on these representations.
Object Navigation. A natural extension is navigating to spe-
cific objects, or ObjectNav for short. In ObjectNav, an agent
is randomly initialized in a scene and tasked to navigate to an
instance of a given object class as quickly as possible (Savva
et al. 2019). In the standard setting, the environment is novel;
however, we consider a pre-exploration setting where the
agent first traverses the environment to construct a top-down
semantic map. In parallel we compute a top-down map of
heights and use it to compute a free space map of the envi-
ronment. We opt for an open loop planing strategy by run-
ning A* search (with a Euclidean heuristic) on the free space
map combined with the semantic map to find a path from
the start location to the nearest target object instance and
then run the trajectory in the Habitat simulator (Savva et al.
2019). We evaluated this strategy on the validation set of
the ObjectNav Habitat challenge (hab 2020), agents are able
to achieve a success rate of 9.658%, with SPL of 5.714%,
soft SPL of 8.702% and average distance to the target of
7.31576m. Note that 26% of the episodes in this set are tar-
geting object categories falling outside of our list of object
classes, we consider those as failure. The evaluation metrics
limited to episodes targeting objects in our list of classes
are: success rate of 13.070%, with SPL of 7.733%, soft SPL
of 11.777% and average distance to the target of 6.70981m.
These results are in the same order of magnitude as the state-
of-the-art methods submitted to the Habitat Challenge (hab
2020), suggesting that the memory tensor contains useful

spatial and semantic information in this pre-exploration set-
ting. Experimentally we found that inaccuracies in the free
space map computation and objects misclassification in the
top-down semantic map are the two major sources of error.
While the later is harder to cope with, the former can be lim-
ited by extended SMNet to predict free space. Fig. 5 shows
qualitative results of two successful examples – start loca-
tions are shown as green squares with trajectory transition-
ing to red until terminating. Using the predicted semantic
maps provides interpretability – when the navigation fails,
we can know why. On the example on the right in Fig. 5 the
chair at the top has been mislabeled as sofa, thus leading the
agent to the second closest chair slightly on the left.

Question Answering. We also consider an embodied ques-
tion answering (Das et al. 2018) task where agents are asked
questions about the environment. Again considering a pre-
exploration setting, the agent first navigates the environment
on a fixed trajectory to generate the spatial memory tensor.
We consider counting questions (e.g. ‘How many beds are
there?’) and design a decoder directly from the spatial mem-
ory. The decoder outputs the number of instances detected
per object category for a given memory input. We train this
decoder using 5m x 5m memory samples. We design this
task as a classification problem with 21 classes correspond-
ing to values ranging from 0 to 19 and 20+. When testing
on larger environments, we apply this decoder using a slid-
ing window over the full memory – accumulating counts.
We compare our approach to a ‘prior’ baseline that answers
with the most frequent answer in the training set. Our ap-
proach outperforms this baseline across the board: 27.78%
vs. 20.83% on accuracy, 13.19% vs. 9.18% class-balanced
accuracy and 5.35 vs. 6.98 on RMSE.

Taken holistically, our results show SMNet is able to
outperform competitive baselines in constructing seman-
tic maps, and spatio-semantic representations built show
promise on downstream tasks. Note that the specific sub-task
of counting instances highlights a limitation in our current
problem setup – using semantic segmentation does not pre-
serve instance information. The generalization to producing
top-down instance segmentation maps is an interesting av-
enue for future work.

References
2020. Habitat Challenge 2020 @ Embodied AI Workshop.
CVPR 2020. https://aihabitat.org/challenge/2020/.

Anderson, P.; Shrivastava, A.; Parikh, D.; Batra, D.; and Lee,
S. 2019. Chasing Ghosts: Instruction Following as Bayesian
State Tracking. In Advances in Neural Information Process-
ing Systems (NeurIPS), 369–379.

Anderson, P.; Wu, Q.; Teney, D.; Bruce, J.; Johnson, M.;
Sünderhauf, N.; Reid, I.; Gould, S.; and van den Hengel,
A. 2018. Vision-and-Language Navigation: Interpreting
visually-grounded navigation instructions in real environ-
ments. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Armeni, I.; Sener, O.; Zamir, A. R.; Jiang, H.; Brilakis, I.;
Fischer, M.; and Savarese, S. 2016. 3d semantic parsing
of large-scale indoor spaces. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 1534–1543.

Beeching, E.; Dibangoye, J.; Simonin, O.; and Wolf, C.
2020. EgoMap: Projective mapping and structured egocen-
tric memory for Deep RL. In European Conference on Ma-
chine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML-PKDD).

Blukis, V.; Misra, D.; Knepper, R. A.; and Artzi, Y. 2018.
Mapping Navigation Instructions to Continuous Control Ac-
tions with Position-Visitation Prediction. In Conference on
Robot Learning, 505–518.

Chang, A.; Dai, A.; Funkhouser, T.; Halber, M.; Niessner,
M.; Savva, M.; Song, S.; Zeng, A.; and Zhang, Y. 2017.
Matterport3d: Learning from rgb-d data in indoor envi-
ronments. International Conference on 3D Vision (3DV)
MatterPort3D dataset license available at: http://kaldir.vc.in.
tum.de/matterport/MP TOS.pdf.

Chaplot, D. S.; Gandhi, D.; Gupta, A.; and Salakhutdinov,
R. 2020a. Object Goal Navigation using Goal-Oriented Se-
mantic Exploration. arXiv preprint arXiv:2007.00643 .

Chaplot, D. S.; Gandhi, D.; Gupta, S.; Gupta, A.; and
Salakhutdinov, R. 2020b. Learning To Explore Using Ac-
tive Neural SLAM. In International Conference on Learn-
ing Representations (ICLR).

Chaplot, D. S.; Jiang, H.; Gupta, S.; and Gupta, A. 2020c.
Semantic Curiosity for Active Visual Learning. In ECCV.

Cheng, R.; Wang, Z.; and Fragkiadaki, K. 2018. Geometry-
aware recurrent neural networks for active visual recogni-
tion. In Advances in Neural Information Processing Sys-
tems, 5081–5091.

Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler,
M.; Benenson, R.; Franke, U.; Roth, S.; and Schiele, B.
2016. The cityscapes dataset for semantic urban scene un-
derstanding. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Csurka, G.; Larlus, D.; Perronnin, F.; and Meylan, F. 2013.
What is a good evaluation measure for semantic segmenta-
tion?. In BMVC, volume 27, 2013.

Dai, A.; Chang, A. X.; Savva, M.; Halber, M.; Funkhouser,
T.; and Nießner, M. 2017. ScanNet: Richly-annotated 3D
Reconstructions of Indoor Scenes. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR).

Das, A.; Datta, S.; Gkioxari, G.; Lee, S.; Parikh, D.; and
Batra, D. 2018. Embodied question answering. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2054–2063.

Epstein, R. A.; Patai, E. Z.; Julian, J. B.; and Spiers, H. J.
2017. The cognitive map in humans: spatial navigation and
beyond. Nature Neuroscience 20(11): 1504–1513. doi:10.
1038/nn.4656. URL https://doi.org/10.1038/nn.4656.

Fraundorfer, F.; Engels, C.; and Nister, D. 2007. Topologi-
cal mapping, localization and navigation using image collec-
tions. In IEEE/RSJ International Conference on Intelligent
Robots and Systems.

Geiger, A.; Lenz, P.; and Urtasun, R. 2012. Are we ready for
Autonomous Driving? The KITTI Vision Benchmark Suite.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

Georgakis, G.; Li, Y.; and Kosecka, J. 2019. Simultane-
ous Mapping and Target Driven Navigation. arXiv preprint
arXiv:1911.07980 .

Gordon, D.; Kembhavi, A.; Rastegari, M.; Redmon, J.; Fox,
D.; and Farhadi, A. 2018. IQA: Visual question answer-
ing in interactive environments. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 4089–4098.

Grinvald, M.; Furrer, F.; Novkovic, T.; Chung, J. J.; Cadena,
C.; Siegwart, R.; and Nieto, J. 2019. Volumetric instance-
aware semantic mapping and 3D object discovery. IEEE
Robotics and Automation Letters 4(3): 3037–3044.

Gupta, S.; Davidson, J.; Levine, S.; Sukthankar, R.; and Ma-
lik, J. 2017. Cognitive mapping and planning for visual navi-
gation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2616–2625.

He, K.; Gkioxari, G.; Dollár, P.; and Girshick, R. 2017. Mask
R-CNN. In Proc. of the IEEE International Conference on
Computer Vision (ICCV), 2961–2969.

Henriques, J. F.; and Vedaldi, A. 2018. Mapnet: An allo-
centric spatial memory for mapping environments. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 8476–8484.

Jiang, J.; Zheng, L.; Luo, F.; and Zhang, Z. 2018. Rednet:
Residual encoder-decoder network for indoor rgb-d seman-
tic segmentation. arXiv preprint arXiv:1806.01054 .

Kadian, A.; Truong, J.; Gokaslan, A.; Clegg, A.; Wijmans,
E.; Lee, S.; Savva, M.; Chernova, S.; and Batra, D. 2019.
Are We Making Real Progress in Simulated Environments?
Measuring the Sim2Real Gap in Embodied Visual Naviga-
tion. arXiv preprint arXiv:1912.06321 .

Kolve, E.; Mottaghi, R.; Han, W.; VanderBilt, E.; Weihs, L.;
Herrasti, A.; Gordon, D.; Zhu, Y.; Gupta, A.; and Farhadi,

A. 2017. Ai2-thor: An interactive 3d environment for visual
ai. arXiv preprint arXiv:1712.05474 .

Maturana, D.; Chou, P.-W.; Uenoyama, M.; and Scherer, S.
2018a. Real-Time Semantic Mapping for Autonomous Off-
Road Navigation. In Hutter, M.; and Siegwart, R., eds., Field
and Service Robotics, 335–350. Springer International Pub-
lishing. ISBN 978-3-319-67361-5.

Maturana, D.; Chou, P.-W.; Uenoyama, M.; and Scherer, S.
2018b. Real-time semantic mapping for autonomous off-
road navigation. In Field and Service Robotics, 335–350.
Springer.

McCormac, J.; Handa, A.; Davison, A.; and Leutenegger,
S. 2017. Semanticfusion: Dense 3d semantic mapping
with convolutional neural networks. In 2017 IEEE Inter-
national Conference on Robotics and automation (ICRA),
4628–4635. IEEE.

Mur-Artal, R.; and Tardós, J. D. 2017. Orb-slam2: An open-
source slam system for monocular, stereo, and rgb-d cam-
eras. IEEE Transactions on Robotics 33(5): 1255–1262.

Máttyus, G.; Wang, S.; Fidler, S.; and Urtasun, R. 2015. En-
hancing Road Maps by Parsing Aerial Images Around the
World. In Proc. of the IEEE International Conference on
Computer Vision (ICCV).

Nagarajan, T.; Li, Y.; Feichtenhofer, C.; and Grauman, K.
2020. EGO-TOPO: Environment Affordances from Ego-
centric Video. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Nathan Silberman, Derek Hoiem, P. K.; and Fergus, R. 2012.
Indoor Segmentation and Support Inference from RGBD
Images. In Proceedings of the European Conference on
Computer Vision (ECCV).

O’keefe, J.; and Nadel, L. 1978. The hippocampus as a cog-
nitive map. Oxford: Clarendon Press.

Pan, B.; Sun, J.; Leung, H. Y. T.; Andonian, A.; and Zhou,
B. 2020. Cross-view semantic segmentation for sensing sur-
roundings. IEEE Robotics and Automation Letters 5(3):
4867–4873.

Parisotto, E.; and Salakhutdinov, R. 2017. Neural map:
Structured memory for deep reinforcement learning. arXiv
preprint arXiv:1702.08360 .

Rosinol, A.; Abate, M.; Chang, Y.; and Carlone, L. 2019.
Kimera: an Open-Source Library for Real-Time Metric-
Semantic Localization and Mapping. arXiv preprint
arXiv:1910.02490 .

Savva, M.; Kadian, A.; Maksymets, O.; Zhao, Y.; Wijmans,
E.; Jain, B.; Straub, J.; Liu, J.; Koltun, V.; Malik, J.; Parikh,
D.; and Batra, D. 2019. Habitat: A Platform for Embodied
AI Research. In Proc. of the IEEE International Conference
on Computer Vision (ICCV).

Sengupta, S.; Sturgess, P.; Ladický, L.; and Torr, P. H. S.
2012. Automatic dense visual semantic mapping from
street-level imagery. In IEEE/RSJ International Conference
on Intelligent Robots and Systems.

Singh, S.; Batra, A.; Pang, G.; Torresani, L.; Basu, S.;
Paluri, M.; and Jawahar, C. V. 2018. Self-supervised Fea-
ture Learning for Semantic Segmentation of Overhead Im-
agery. In Proceedings of the British Machine Vision Confer-
ence (BMVC).
Song, S.; Lichtenberg, S. P.; and Xiao, J. 2015. SUN RGB-
D: A RGB-D scene understanding benchmark suite. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 567–576.
Straub, J.; Whelan, T.; Ma, L.; Chen, Y.; Wijmans, E.;
Green, S.; Engel, J. J.; Mur-Artal, R.; Ren, C.; Verma, S.;
et al. 2019. The Replica dataset: A digital replica of indoor
spaces. arXiv preprint arXiv:1906.05797 .
Sünderhauf, N.; Dayoub, F.; McMahon, S.; Talbot, B.;
Schulz, R.; Corke, P.; Wyeth, G.; Upcroft, B.; and Milford,
M. 2016. Place categorization and semantic mapping on a
mobile robot. In IEEE International Conference on Robotics
and Automation (ICRA).
Tung, H.-Y. F.; Cheng, R.; and Fragkiadaki, K. 2019. Learn-
ing spatial common sense with geometry-aware recurrent
networks. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2595–2603.
Wijmans, E.; Datta, S.; Maksymets, O.; Das, A.; Gkioxari,
G.; Lee, S.; Essa, I.; Parikh, D.; and Batra, D. 2019. Embod-
ied question answering in photorealistic environments with
point cloud perception. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
6659–6668.
Wijmans, E.; Kadian, A.; Morcos, A.; Lee, S.; Essa, I.;
Parikh, D.; Savva, M.; and Batra, D. 2020. Decentralized
Distributed PPO: Solving PointGoal Navigation. Interna-
tional Conference on Lefvarning Representations (ICLR) .
Xia, F.; R. Zamir, A.; He, Z.-Y.; Sax, A.; Malik, J.; and
Savarese, S. 2018. Gibson env: real-world perception for
embodied agents. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE.
Yang, J.; Ren, Z.; Xu, M.; Chen, X.; Crandall, D. J.; Parikh,
D.; and Batra, D. 2019. Embodied Amodal Recognition:
Learning to Move to Perceive Objects. In Proc. of the
IEEE International Conference on Computer Vision (ICCV),
2040–2050.
Zhang, J.; Tai, L.; Boedecker, J.; Burgard, W.; and Liu, M.
2017. Neural SLAM: Learning to explore with external
memory. arXiv preprint arXiv:1706.09520 .

7 Appendix
Data splits of the Dataset
We use the same data split as Wijmans et al. (Wijmans et al.
2019), and provide a list of environment names in the Mat-
terport3D dataset (Chang et al. 2017) in Table 2. There are
85 unique floors in our dataset, 61 for training, 7 for valida-
tions, and 17 for testing.

We also evaluated SMNet on the Replica dataset (Straub
et al. 2019). Table 3 lists the 17 environments used for eval-
uation.

Evaluations for each object category
In Table 4, we perform evaluations for each object cate-
gory in the test set of the Matterport3D dataset (Chang et al.
2017). SMNet consistently out-perform baseline approaches
for most object categories. We also compute evaluation met-
rics for each object category on the Replica dataset (Straub
et al. 2019) in Table 5. Here also SMNet consistently out-
perform baseline approaches for most object categories.

Navigation path recording interface
Figure 7 represents an example navigation trajectory. We
manually recorded these paths by leveraging the top-down
map during navigation collection to encourage trajectories
that provide a good coverage of the scene.

SMNet visual feature encoder. Experimentation of
using different egocentric features extracted at
different stages in RedNet.
In this section we study the impact of projecting egocentric
features extracted at different stages in RedNet (Jiang et al.
2018). Specifically we extract the last encoder layer features,
the last layer of the decoder features, the scores, the prob-
ability distribution over the 13 categories (softmax of the
scores) and the one-hot encoded version of the egocentric
labels (we one-hot encoded the argmax of the scores). In ad-
dition, we also vary the number of channels in the memory
tensor. For each feature type, we experiment with the follow-
ing two settings (1) the number of memory channels is equal
to the number of egocentric feature channels. (2) The num-
ber of memory channels equals to 256. We set that number
to be larger than the number of channels of the projected fea-
tures (expect for the encoder features) in order to allow more
space for the GRU to accumulate information over time. Ta-
ble 6 groups all of these experiments with boostrapped stan-
dard error. We also report the egocentric resolution of the
different features. For all these experiment we up-sample
the egocentric feature map resolution to (480 × 640) using
bi-linear interpolation before projection (if necessary). Note
that the two experiments of projecting the last encoder layer
features with 256 and 512 number of memory channels are
missing due to memory constraint during training.

We find that projecting the last layer features of the Red-
Net decoder (Jiang et al. 2018) with 256 number of mem-
ory channels yields to the best performances (mIoU 36.49,
mBF1 36.70).

Heuristic to reduce “label splatter” in Segment→
Project
In this section we explore simple processing techniques to
enhance the performances of the Seg. → Proj. baseline. In
the Matterport3D dataset (Chang et al. 2017) the depth val-
ues on the edges of objects can sometimes be unreliable.
This is due to slightly different geometry between the depth
and semantic meshes. As a result, in the Segment→ Project
approach, the projected segmentation maps can be noisy and
splatter around the map. In addition and in general, any ego-
centric labeling mistakes made around objects boundaries
will lead to the same error. To reduce the impact of this
problem, we try to (1) erode the semantic prediction map
with a 10 pixel square filter. We apply a binary erosion fil-
ter to the semantic prediction frame for all categories. (2)
Downsample the egocentric semantic prediction map from
(480 × 640) to (120 × 160). Any missed pixels in the ob-
served area of the top-down semantic map caused by this
down-sampling is filled using median filtering (k=10). (3)
Post-process the top-down semantic maps with a median fil-
ter (k=3). However, note that those are simple heuristics and
may not generalize well to new data collected by other sen-
sors.

We find that applying erosion on the egocentric semantic
predicton map hurts the performances: mIoU 29.34 > 23.07
at full resolution (480×640) and mIoU 31.25 > 24.29 at low
resolution (120×160). However, down-sampling the seman-
tic frame boosts the performances: mIoU 31.25 > 29.34. In
addition, post-processing the semantic maps with a median
filter improves even further the results on the mIoU metric
32.49 > 31.25.

In our experiments we find that SMNet performs better
than the Seg.→ Proj. baseline – achieving mBF1 37.02, and
mIoU 36.77. We find that applying a decoder on top of the
memory tensor helps reducing the label splatter phenomena.

Object Navigation in more detail.
For the ObjectNav downstream task we opt for an open loop
planing strategy using A*. First we compute a free space
map of the environment using the map of heights. The map
of heights is generated while running SMNet. At each time
step, the height of each projection is stored in this map. Re-
call that for pixels in a given frame projecting onto the same
2D location in the top-down map we keep the pixel with
highest height. In addition, points above 50cm of the camera
height are discarded to avoid detecting ceiling pixels. Using
the map of heights we estimate the floor height as the pre-
dominant height value. We then threshold the map of heights
around the floor height (± 5cm) to create a free space map.
We preprocess the free space map using a binary closing op-
eration with a square element of 10 pixels in order to create
a contiguous map.

Secondly, we create a binary goal map from the predicted
top-down semantic map by setting to 1 any pixels labeled
as the target object category. We preprocess the goal map
with a binary opening operation with a square element of
10 pixels to limit the impact of small noisy detections in the
top-down semantic map. We then use A* with the free space

Train Environments
ZMojNkEp431 0 ZMojNkEp431 1 aayBHfsNo7d 0 aayBHfsNo7d 1
ac26ZMwG7aT 0 cV4RVeZvu5T 0 cV4RVeZvu5T 1 e9zR4mvMWw7 1
e9zR4mvMWw7 2 i5noydFURQK 0 i5noydFURQK 1 jh4fc5c5qoQ 0
mJXqzFtmKg4 0 p5wJjkQkbXX 1 r1Q1Z4BcV1o 0 r47D5H71a5s 0
rPc6DW4iMge 0 rPc6DW4iMge 1 sT4fr6TAbpF 0 uNb9QFRL6hY 0
17DRP5sb8fy 0 1LXtFkjw3qL 0 1LXtFkjw3qL 1 1LXtFkjw3qL 2
1pXnuDYAj8r 0 1pXnuDYAj8r 1 29hnd4uzFmX 0 29hnd4uzFmX 1
2n8kARJN3HM 0 2n8kARJN3HM 1 5LpN3gDmAk7 0 5q7pvUzZiYa 0
5q7pvUzZiYa 1 5q7pvUzZiYa 2 759xd9YjKW5 0 759xd9YjKW5 1
82sE5b5pLXE 0 8WUmhLawc2A 0 B6ByNegPMKs 0 E9uDoFAP3SH 0
E9uDoFAP3SH 1 EDJbREhghzL 0 GdvgFV5R1Z5 0 HxpKQynjfin 0
JF19kD82Mey 0 JF19kD82Mey 1 JeFG25nYj2p 0 JmbYfDe2QKZ 0
JmbYfDe2QKZ 1 Pm6F8kyY3z2 1 PuKPg4mmafe 0 S9hNv5qa7GM 0
S9hNv5qa7GM 1 ULsKaCPVFJR 0 ULsKaCPVFJR 1 Uxmj2M2itWa 0
VLzqgDo317F 1 VVfe2KiqLaN 0 VVfe2KiqLaN 1 Vvot9Ly1tCj 0
ur6pFq6Qu1A 0

Val Environments
Z6MFQCViBuw 0 x8F5xyUWy9e 0 zsNo4HB9uLZ 0 8194nk5LbLH 0
QUCTc6BB5sX 0 QUCTc6BB5sX 1 X7HyMhZNoso 0

Test Environments
YFuZgdQ5vWj 0 YFuZgdQ5vWj 1 YVUC4YcDtcY 0 jtcxE69GiFV 0
q9vSo1VnCiC 0 rqfALeAoiTq 1 rqfALeAoiTq 2 wc2JMjhGNzB 1
2t7WUuJeko7 0 5ZKStnWn8Zo 0 5ZKStnWn8Zo 1 ARNzJeq3xxb 0
RPmz2sHmrrY 0 UwV83HsGsw3 1 Vt2qJdWjCF2 0 WYY7iVyf5p8 1
UwV83HsGsw3 0
Table 2: Train/val/test environments for Matterport3D scenes (Chang et al. 2017) in our dataset

Test Environments
apartment 0 apartment 1 apartment 2 frl apartment 0
frl apartment 1 frl apartment 2 frl apartment 3 frl apartment 4
frl apartment 5 hotel 0 office 0 office 1
office 2 office 3 office 4 room 0
room 1

Table 3: Test environments for Replica scenes (Straub et al. 2019)

Recall Precision IoU BF1
Segment→

Project
Project→
Segment semantic SLAM SMNet

Segment→
Project

Project→
Segment semantic SLAM SMNet

Segment→
Project

Project→
Segment semantic SLAM SMNet

Segment→
Project

Project→
Segment semantic SLAM SMNet

void 98.22 ± 0.02 95.15 ± 0.02 95.11 ± 0.08 96.27 ± 0.03 91.35 ± 0.04 89.57 ± 0.06 91.46 ± 0.04 93.42 ± 0.02 89.86 ± 0.04 85.66 ± 0.05 87.38 ± 0.11 90.16 ± 0.04 - - -
shelving 17.86 ± 0.20 5.07 ± 0.13 17.96 ± 0.17 21.33 ± 0.24 34.29 ± 0.32 13.24 ± 0.30 44.38 ± 0.43 36.24 ± 0.22 13.15 ± 0.13 3.78 ± 0.09 14.50 ± 0.13 15.34 ± 0.14 21.76 ± 0.15 7.34 ± 0.11 22.05 ± 0.24 24.56 ± 0.18

dresser 19.57 ± 0.12 16.57 ± 0.24 21.90 ± 0.27 28.03 ± 0.23 42.95 ± 0.47 32.14 ± 0.45 43.08 ± 0.51 47.82 ± 0.50 15.32 ± 0.11 12.18 ± 0.18 16.80 ± 0.21 21.15 ± 0.18 28.94 ± 0.18 14.29 ± 0.22 28.34 ± 0.29 31.52 ± 0.18

bed 69.52 ± 0.27 68.84 ± 0.35 57.45 ± 0.36 71.73 ± 0.20 83.69 ± 0.18 52.01 ± 0.46 72.33 ± 0.30 85.53 ± 0.20 61.13 ± 0.23 41.94 ± 0.36 47.03 ± 0.30 63.91 ± 0.19 51.19 ± 0.22 33.49 ± 0.26 48.99 ± 0.25 54.57 ± 0.23

cushion 70.71 ± 0.21 34.81 ± 0.27 46.89 ± 0.20 78.25 ± 0.24 58.95 ± 0.31 43.76 ± 0.34 42.06 ± 0.41 56.83 ± 0.27 47.21 ± 0.22 24.02 ± 0.20 28.20 ± 0.21 48.95 ± 0.22 50.91 ± 0.23 33.55 ± 0.19 43.14 ± 0.22 53.01 ± 0.22

fireplace 20.84 ± 0.29 0.00 ± 0.00 29.61 ± 0.40 30.32 ± 0.57 63.58 ± 0.31 0.00 ± 0.00 28.58 ± 1.59 68.92 ± 0.33 18.59 ± 0.25 0.00 ± 0.00 11.09 ± 0.59 26.59 ± 0.47 26.32 ± 0.33 0.00 ± 0.00 24.72 ± 0.61 37.07 ± 0.43

sofa 50.21 ± 0.31 27.96 ± 0.28 51.35 ± 0.28 43.30 ± 0.30 51.69 ± 0.26 24.83 ± 0.23 44.03 ± 0.24 56.60 ± 0.33 33.99 ± 0.19 15.00 ± 0.14 31.11 ± 0.20 32.35 ± 0.22 30.00 ± 0.15 15.78 ± 0.12 36.59 ± 0.21 34.28 ± 0.19

table 56.12 ± 0.21 38.73 ± 0.14 56.46 ± 0.21 65.10 ± 0.21 64.96 ± 0.26 38.30 ± 0.20 67.32 ± 0.22 59.23 ± 0.26 43.01 ± 0.18 23.83 ± 0.12 44.25 ± 0.18 44.88 ± 0.19 29.42 ± 0.11 17.01 ± 0.09 36.34 ± 0.14 31.32 ± 0.12

chair 38.22 ± 0.21 21.45 ± 0.16 44.59 ± 0.25 53.79 ± 0.27 76.97 ± 0.17 48.26 ± 0.27 58.58 ± 0.31 67.79 ± 0.15 34.28 ± 0.18 17.44 ± 0.13 33.61 ± 0.16 42.79 ± 0.19 42.30 ± 0.15 20.63 ± 0.12 42.38 ± 0.16 46.83 ± 0.13

cabinet 21.72 ± 0.15 9.77 ± 0.15 21.13 ± 0.14 21.93 ± 0.17 37.58 ± 0.46 20.80 ± 0.24 27.58 ± 0.19 45.18 ± 0.36 15.88 ± 0.15 7.03 ± 0.10 13.56 ± 0.09 17.06 ± 0.11 28.01 ± 0.11 10.77 ± 0.12 29.04 ± 0.15 31.41 ± 0.13

plant 18.70 ± 0.09 15.76 ± 0.20 10.89 ± 0.13 47.35 ± 0.44 57.32 ± 0.80 40.09 ± 0.46 53.77 ± 0.71 47.22 ± 0.74 16.18 ± 0.13 12.11 ± 0.08 9.69 ± 0.10 30.89 ± 0.46 28.54 ± 0.21 16.47 ± 0.07 17.65 ± 0.15 35.55 ± 0.40

counter 25.00 ± 0.26 13.87 ± 0.28 23.63 ± 0.33 34.66 ± 0.28 59.04 ± 0.47 36.19 ± 0.56 42.64 ± 0.59 49.53 ± 0.38 21.34 ± 0.23 11.20 ± 0.23 18.10 ± 0.28 25.56 ± 0.22 28.53 ± 0.16 11.77 ± 0.21 22.01 ± 0.27 32.75 ± 0.14

sink 18.85 ± 0.22 7.78 ± 0.17 12.52 ± 0.21 24.64 ± 0.27 44.95 ± 0.64 19.43 ± 0.23 55.77 ± 0.41 41.30 ± 0.60 14.84 ± 0.16 5.65 ± 0.10 11.35 ± 0.18 17.71 ± 0.21 31.57 ± 0.15 10.34 ± 0.14 22.94 ± 0.19 30.79 ± 0.21

Table 4: Category-level performances of SMNet and baseline approaches in the Matterport3D test set.

map and the goal map to find a path from the start location to
the nearest target object instance. Any locations equal to 1 in
the free space map are potential nodes in A*. At each time
step our planner looks at all neighbor nodes and select the
one closer to target based on a Euclidean metric. The neigh-
bors’ locations are defined on a 0.25m radius circle centered
on the agent’s position and spawn equally every 30deg from
the agent’s current heading. This accounts for the set of ac-
tions with step sizes defined in the Habitat challenge (hab
2020) (i.e forward step size of 0.25m and rotation angle of

30deg). We filter out unreachable neighbors by testing if the
agent can navigate from its position to the neighbor’s posi-
tion. We perform this by dragging a disk of radius equal to
the agent’s radius along the line between the agent’s position
and the neighbor’s position on the free space map. Lastly, a
target object is reached if the current node is within a 1m
radius and the object can be seen by the agent. In order to
implement the second part of the stopping criteria we select,
from the goal map, each target pixels within a 1m range from
the current node. The goal is considered reached if for one of

Recall Precision IoU BF1
Segment→

Project
Project→
Segment semantic SLAM SMNet

Segment→
Project

Project→
Segment semantic SLAM SMNet

Segment→
Project

Project→
Segment semantic SLAM SMNet

Segment→
Project

Project→
Segment semantic SLAM SMNet

void 97.77 ± 0.03 97.34 ± 0.02 97.58 ± 0.02 97.00 ± 0.03 91.67 ± 0.04 85.42 ± 0.07 91.33 ± 0.04 93.47 ± 0.04 89.79 ± 0.04 83.46 ± 0.07 89.30 ± 0.04 90.84 ± 0.04 - - -
shelving 33.11 ± 0.34 0.00 ± 0.00 35.08 ± 0.40 32.24 ± 0.37 62.54 ± 0.49 0.00 ± 0.00 59.93 ± 0.64 69.25 ± 0.99 27.31 ± 0.25 0.00 ± 0.00 28.05 ± 0.32 27.60 ± 0.35 27.19 ± 0.25 nan ± nan 46.09 ± 0.34 33.97 ± 0.43

dresser 0.00 ± 0.00 0.81 ± 0.03 0.00 ± 0.00 0.05 ± 0.00 0.00 ± 0.00 2.42 ± 0.11 0.00 ± 0.00 0.05 ± 0.00 0.00 ± 0.00 0.60 ± 0.02 0.00 ± 0.00 0.02 ± 0.00 nan ± nan 2.59 ± 0.06 nan ± nan 0.11 ± 0.00

bed 90.55 ± 0.06 71.00 ± 0.73 87.22 ± 0.11 89.39 ± 0.06 86.70 ± 0.45 55.54 ± 0.75 79.10 ± 0.56 85.00 ± 0.47 79.43 ± 0.40 45.46 ± 0.64 70.81 ± 0.50 77.14 ± 0.42 65.25 ± 0.32 32.06 ± 0.39 69.20 ± 0.24 61.52 ± 0.40

cushion 61.88 ± 0.25 11.84 ± 0.23 44.54 ± 0.29 62.76 ± 0.30 72.68 ± 0.29 39.80 ± 0.50 65.86 ± 0.36 61.51 ± 0.29 50.09 ± 0.23 9.98 ± 0.19 35.95 ± 0.23 44.88 ± 0.22 57.75 ± 0.27 20.09 ± 0.32 55.88 ± 0.22 58.55 ± 0.22

fireplace - - - - - - - - - - - - - - - -
sofa 78.15 ± 0.19 15.43 ± 0.24 75.40 ± 0.22 80.71 ± 0.14 81.34 ± 0.14 64.11 ± 0.40 80.57 ± 0.18 77.47 ± 0.19 66.26 ± 0.17 14.09 ± 0.21 63.62 ± 0.15 65.30 ± 0.15 58.98 ± 0.17 17.96 ± 0.22 65.89 ± 0.10 58.50 ± 0.18

table 64.01 ± 0.20 43.00 ± 0.21 69.37 ± 0.22 73.17 ± 0.20 76.89 ± 0.45 61.13 ± 0.29 83.17 ± 0.37 74.73 ± 0.40 53.58 ± 0.29 33.66 ± 0.17 60.71 ± 0.27 58.69 ± 0.32 45.06 ± 0.16 28.12 ± 0.17 59.90 ± 0.18 48.31 ± 0.18

chair 58.77 ± 0.18 11.00 ± 0.12 61.79 ± 0.20 62.31 ± 0.21 69.04 ± 0.24 29.10 ± 0.39 77.39 ± 0.20 76.46 ± 0.17 46.38 ± 0.14 8.67 ± 0.11 52.28 ± 0.17 52.21 ± 0.16 53.43 ± 0.17 12.66 ± 0.13 62.96 ± 0.21 58.82 ± 0.16

cabinet 25.36 ± 0.12 7.81 ± 0.19 24.44 ± 0.15 30.31 ± 0.13 59.72 ± 0.23 34.90 ± 0.71 53.03 ± 0.30 66.77 ± 0.20 21.64 ± 0.11 6.85 ± 0.17 20.08 ± 0.13 26.30 ± 0.11 39.47 ± 0.13 11.06 ± 0.23 40.79 ± 0.16 46.87 ± 0.12

plant 15.83 ± 0.22 10.43 ± 0.30 3.56 ± 0.07 24.99 ± 0.25 99.17 ± 0.02 70.76 ± 0.72 97.18 ± 0.14 98.58 ± 0.02 15.80 ± 0.22 9.95 ± 0.28 3.56 ± 0.07 24.90 ± 0.25 29.28 ± 0.28 11.11 ± 0.32 6.73 ± 0.14 33.22 ± 0.29

counter 28.75 ± 0.57 26.15 ± 0.25 26.06 ± 0.40 45.91 ± 0.70 47.88 ± 0.95 34.32 ± 0.37 37.01 ± 0.77 50.50 ± 0.64 22.66 ± 0.51 17.25 ± 0.17 17.81 ± 0.32 32.40 ± 0.55 35.57 ± 0.38 26.63 ± 0.20 29.16 ± 0.41 43.82 ± 0.27

sink 23.25 ± 0.55 26.19 ± 0.52 24.89 ± 0.34 40.45 ± 0.81 35.13 ± 0.56 20.98 ± 0.46 22.04 ± 0.67 22.58 ± 0.36 16.01 ± 0.37 12.06 ± 0.23 12.46 ± 0.29 15.54 ± 0.21 46.68 ± 0.70 22.49 ± 0.26 28.25 ± 0.41 34.77 ± 0.37

Table 5: Category-level performances of SMNet and baseline approaches in the Replica dataset. Note that the fireplace category is not present
in the Replica dataset.

Figure 7: Example navigation trajectory and collection interface.

What’s
Projected

Ego. feat.
resolution

Features
#Channels

Memory
#Channels Acc mRecall mPrecision mIoU mBF1

SM
N

et

encoder (15×20) 512 128 85.82 ± 0.06 38.97 ± 0.06 52.66 ± 0.09 29.03 ± 0.06 26.24 ± 0.05

last layer (240×320) 64 64 87.92 ± 0.08 46.89 ± 0.11 58.46 ± 0.10 36.27 ± 0.08 36.35 ± 0.09

last layer (240×320) 64 256 88.18 ± 0.09 47.20 ± 0.11 57.99 ± 0.11 36.49 ± 0.09 36.70 ± 0.09
scores (480×640) 13 13 87.94 ± 0.08 41.25 ± 0.10 59.34 ± 0.09 33.42 ± 0.08 33.78 ± 0.08

scores (480×640) 13 256 87.83 ± 0.09 43.10 ± 0.11 59.46 ± 0.11 34.63 ± 0.09 35.75 ± 0.09

softmax (480×640) 13 13 87.86 ± 0.06 41.76 ± 0.08 58.70 ± 0.13 33.47 ± 0.06 33.15 ± 0.07

softmax (480×640) 13 256 87.79 ± 0.07 43.25 ± 0.09 59.41 ± 0.11 34.38 ± 0.07 34.30 ± 0.08

one-hot (480×640) 13 13 87.85 ± 0.06 40.68 ± 0.08 58.01 ± 0.13 32.52 ± 0.06 32.64 ± 0.07

one-hot (480×640) 13 256 87.52 ± 0.07 44.65 ± 0.08 56.07 ± 0.12 34.12 ± 0.07 33.47 ± 0.07

Table 6: Results of SMNet on top-down semantic segmentation on the Matterport3D dataset under different settings. Here we experiment
with different egocentric features extracted at different stages in RedNet. We also vary the number of channels in the memory tensor.

Egocentric
resolution

Egocentric
erosion

post-processing
med. filter Acc mRecall mPrecision mIoU mBF1

Se
g.
→

Pr
oj

. (480×640) - - 86.08 ± 0.05 37.47 ± 0.07 51.86 ± 0.09 29.34 ± 0.05 33.08 ± 0.06

(480×640) X - 85.35 ± 0.05 26.70 ± 0.06 57.59 ± 0.11 23.07 ± 0.05 27.95 ± 0.06

(120×160) X - 85.81 ± 0.05 28.00 ± 0.06 59.49 ± 0.12 24.29 ± 0.05 28.11 ± 0.06

(120×160) - - 87.07 ± 0.06 39.48 ± 0.07 54.62 ± 0.10 31.25 ± 0.06 34.22 ± 0.07
(120×160) - X 88.14 ± 0.07 40.18 ± 0.09 58.70 ± 0.11 32.49 ± 0.07 33.03 ± 0.07

Table 7: Results of the Seg.→ Proj. baseline on top-down semantic segmentation on the Matterport3D dataset under different settings.

those selections, the pixels along the line between the agent
and the given goal pixel are all observed (an observed pixel
is a pixel that has received a projection).

Ultimately, we run the generated trajectories in the Habi-
tat simulator (Savva et al. 2019) for evaluation. We evaluate
this strategy on the validation set of the ObjectNav Habitat
challenge (hab 2020). Using this approach we achieve a
success rate of 9.658%, with SPL of 5.714%, soft SPL of
8.702% and average distance to the target of 7.31576m.
Note that 26% of the episodes in this set are targeting object

categories falling outside of our list of object classes, we
consider those as failure. The evaluation metrics limited to
episodes targeting objects in our list of classes are: success
rate of 13.070%, with SPL of 7.733%, soft SPL of 11.777%
and average distance to the target of 6.70981m. Table 10
breakdowns the metrics per house. There are 5 houses
(8194nk5LbLH, oLBMNvg9in8, QUCTc6BB5sX,
X7HyMhZNoso, x8F5xyUWy9e) with a success rate
lower than 0.05 while the rest are greater than 0.10. Part of
the explanation is this is due to naive estimations of free

space for those 5 houses.

GT free
space # episode dist. to goal success SPL soft SPL

ALL episodes - 2195 7.31576 0.09658 0.05714 0.08702
X 2195 5.65880 0.31250 0.20700 0.28290

Episodes w/
SMNet Obj. Cat.

- 1622 6.70981 0.1307 0.07733 0.11777
X 1622 4.46750 0.42290 0.28010 0.38280

Table 8: ObjectNav results comparison with an A* planner using
the ground truth free space maps.

In order to estimate the impact of the free space map esti-
mation on the results, we run our planner with the ground
truth free space maps. The ground truth free space maps
are generated using the Habitat API (Savva et al. 2019). Ta-
ble 8 shows results of this ablation experiment. Using the
ground-truth free space maps we see an increase in success
of +0.21592 and SPL of +0.14986 on all episodes and an
increase in success of +0.2922 and SPL of +0.20277 on
episodes targeting objects in our list of classes. Table 11
shows results per house with ground-truth free space maps.
On the previous 5 outlier houses we see an average improve-
ment on success of +0.24244 and SPL of +0.17444.

We now study the impact of the predicted top-down maps
on the performances. We select 7 out of the 22 validation
environments (zsNo4HB9uLZ 0, x8F5xyUWy9e 0,
X7HyMhZNoso 0, QUCTc6BB5sX 0,
QUCTc6BB5sX 1, 8194nk5LbLH 0,
Z6MFQCViBuw 0) for which we have ground-truth
top-down semantic maps (the remaining 15 environments
are discarded because they belong to houses hard to divide
by floor using a simple plane). We run our algorithm
for those 7 environments with the following information
provided to the planner: (1) ground-truth free space and
ground-truth semantic maps, (2) ground-truth free space
and predicted semantic maps, (3) predicted free space and
ground-truth semantic maps and, (4)predicted free space
and predicted semantic maps. Table 9 groups all results.

GT semantic
maps

GT free
space dist. to goal success SPL soft SPL

771 Episodes
(7 Env.)

(1) X X 1.8805 0.6913 0.4993 0.6154
(2) - X 4.1706 0.4306 0.2924 0.4177
(3) X - 6.4279 0.2153 0.1403 0.1777
(4) - - 7.3593 0.1154 0.0669 0.0967

Table 9: ObjectNav results on a subset of episodes (771) from the
validation set of the ObjectNav Habitat challenge (hab 2020). This
table compares performances of our A* planner when the ground
truth free space maps and the ground-truth semantic maps are pro-
vided.

On this subset of episodes, our algorithm achieves a suc-
cess of 0.6913 when the ground-truth free space and seman-
tic maps are provided. On a rough estimate, from the 30%
failure cases, 10% are due to the planner and the other 20%
are due to failures in the simulator. We find that the planner
failure cases are mostly due to very narrow sections on the
free space map making it hard for the algorithm to plan a
path through considering some radius margin for the agent.
In simulation, the agent very rarely does collisions. How-
ever, the major source of error is due to a delicate imple-
mentation of episode success in A* leading to wrong final
agent’s position. When comparing experiments (1) and (2)

form Table 9 we see a decrease in performances of -0.2607
in success and -0.2069 in SPL caused by prediction errors on
the top-down semantic map. When comparing (1) and (3) we
witness a much larger drop in performances with -0.476 in
success and -0.359 SPL caused by errors on the free space
maps. Experiment (4) reports results of using both the pre-
dicted semantic maps and free space maps. Errors on those
two predicted maps reduce the performances of -0.5759 on
success and -0.4324 on SPL compared to (1).

These results suggest that the estimation of the free space
is the major source of error. This can be improved by ex-
tended SMNet to predict free space. In addition, these out-
comes suggest that the predicted top-down semantic maps
contains useful spatial and semantic information and allow
good performances on the ObjecNav task (hab 2020) in this
pre-exploration setting.

ALL episodes 2azQ1b91cZZ 8194nk5LbLH EU6Fwq7SyZv oLBMNvg9in8 pLe4wQe7qrG QUCTc6BB5sX TbHJrupSAjP X7HyMhZNoso x8F5xyUWy9e Z6MFQCViBuw zsNo4HB9uLZ

episodes 2195 200 201 198 201 200 197 200 200 200 200 198
distance to goal 7.31576 6.3678 13.57 6.2462 4.9034 2.1607 11.4774 7.8346 11.0309 6.4799 6.5443 3.8561

success 0.09658 0.205 0.0398 0.101 0.0199 0.105 0.0457 0.145 0.04 0 0.11 0.2525
SPL 0.05714 0.1168 0.0249 0.0479 0.0113 0.0579 0.0127 0.1083 0.0275 0 0.0661 0.1559

soft SPL 0.08702 0.2502 0.0352 0.0706 0.0221 0.0578 0.0389 0.1371 0.0447 0.0001 0.1161 0.1851

Table 10: Per house breakdown results on the validation set of the ObjectNav Habitat challenge (hab 2020).

ALL episodes 2azQ1b91cZZ 8194nk5LbLH EU6Fwq7SyZv oLBMNvg9in8 pLe4wQe7qrG QUCTc6BB5sX TbHJrupSAjP X7HyMhZNoso x8F5xyUWy9e Z6MFQCViBuw zsNo4HB9uLZ

episodes 2195 200 201 198 201 200 197 200 200 200 200 198
distance to goal 5.6588 4.5287 12.9276 5.4649 4.1525 1.6194 7.7236 6.4149 7.4915 3.5627 5.4019 2.9319

success 0.3125 0.37 0.0547 0.2879 0.1791 0.5 0.2234 0.33 0.375 0.38 0.34 0.399
SPL 0.207 0.231 0.0369 0.1655 0.1111 0.3269 0.166 0.2342 0.2998 0.2584 0.2029 0.2449

soft SPL 0.2829 0.3838 0.0621 0.249 0.1592 0.3204 0.3517 0.2912 0.4052 0.3234 0.2315 0.3374

Table 11: Per house breakdown results on the validation set of the ObjectNav Habitat challenge (hab 2020) with ground-truth free space maps.

