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Abstract

We study the task of 3D multi-object re-identification from
embodied tours. Specifically, an agent is given two tours
of an environment (e.g. an apartment) under two different
layouts (e.g. arrangements of furniture). Its task is to detect
and re-identify objects in 3D – e.g. a ‘sofa’ moved from
location A to B, a new ‘chair’ in the second layout at lo-
cation C, or a ‘lamp’ from location D in the first layout
missing in the second. To support this task, we create an au-
tomated infrastructure to generate paired egocentric tours of
initial/modified layouts in the Habitat simulator [28, 33] us-
ing Matterport3D scenes [9], YCB [8] and Google-scanned
objects [26]. We present 3D Semantic MapNet (3D-SMNet)
– a two-stage re-identification model consisting of (1) a 3D
object detector that operates on RGB-D videos with known
pose, and (2) a differentiable object matching module that
solves correspondence estimation between two sets of 3D
bounding boxes. Overall, 3D-SMNet builds object-based
maps of each layout and then uses a differentiable matcher
to re-identify objects across the tours. After training 3D-
SMNet on our generated episodes, we demonstrate zero-shot
transfer to real-world rearrangement scenarios by instantiat-
ing our task in Replica [32], Active Vision [2], and RIO [35]
environments depicting rearrangements. On all datasets, we
find 3D-SMNet outperforms competitive baselines. Further,
we show jointly training on real and generated episodes can
lead to significant improvements over training on real data
alone.

1. Introduction
Imagine a home assistant robot asked to tidy up a house after
an event or a party. Such an agent needs to have complete
context of what objects belong where, what was added, and
is missing. It also needs to know where all the objects
are now, were before, and create a map of how the scene
has changed in order to restore it back to its normal state.
This example illustrates a broadly useful skill for embodied
agents interacting with human environments – the ability to
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Figure 1. 3D Multi-Object Re-Identification: an agent is pro-
vided two tours of an environment (egocentric RGD-D videos with
known pose). The two layouts may differ with objects added (red),
removed (orange), moved (green) or unchanged (blue). The goal
for the agent is to detect and re-identify objects in 3D.

represent the world as a set of dynamic objects that persist
over time. This is foundational to linking user commands
to entities in the world that are not currently in the field of
view, answering questions about the location of objects (e.g.
where did I leave my phone?), and reasoning about likely
events that have changed the state of the world (e.g. someone
must be home because a new coat is on the rack).

Within the context of this longer-term goal, we study the
task of 3D multi-object detection and re-identification in
an indoor space. An embodied agent (a virtual robot or an
egocentric AI assistant) is equipped with an RGB-D camera
with known pose (extracted via a localization system). The
agent is provided two tours (represented as camera trajecto-
ries) of an environment under different layouts. Between the
two layouts, objects may have been added, removed, moved,
or be unchanged. The agent needs to detect 3D bounding
boxes and match them between the two layouts (as illus-
trated in Fig. 1). This is a challenging and realistic problem
that goes beyond the classical 2D or 3D object detection
formulation. First, the agent must localize objects in 3D
in varied poses and contexts from passive egocentric views
(it does not control how an object is framed). Second, it
must match instances across layouts despite large changes
in pose or relationships to surrounding objects (e.g. a lamp
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may be moved across the room, breaking inter-object con-
textual relationships). Third, object instances across tours
may have differing degree of observation (i.e. an object seen
from multiple sides in the first tour might only be seen from
one in the second).

Our approach, called 3D Semantic MapNet (3D-SMNet),
consists of two natural components following the structure
of the task –
(1) a 3D object detector that takes as input an RGB-D video

with known poses and outputs an object-based map. The
map (Fig. 1(c)) stores a set of object instances, each
defined by its 3D bounding-box centroid, orientation
and dimensions, class label, and a feature descriptor
used for the re-identification phase. The object-map for
each layout are then passed to

(2) a matching module that estimates correspondences be-
tween two sets of 3D bounding boxes, based on appear-
ance, geometry, and context (Fig. 1(d)).

To benchmark the current state of the field on this task, we
take a straight-forward approach of instantiating these com-
ponents with recent prior works as (1) a VoteNet[25] detector
and (2) a modified SuperGlue[27] optimal matching layer.
To improve performance on added and removed objects, we
introduce a novel scene-adaptive mechanism for identifying
unmatchable objects.

We conduct experiments using photo-realistic scans of
building-scale environments (homes, offices, churches) in
the Matterport3D (MP3D) dataset [9] using the Habitat sim-
ulation platform [28, 33], which allows access to agent state,
navigation trajectories, RGB-D renderings, etc. The scans
in MP3D are ‘monolithic’, i.e. the entire environment is
stored as a single textured mesh and individual objects can
not be moved or removed. To overcome this problem, we
use the Google-Scanned-Objects (GSO) [26] and YCB ob-
jects [8] datasets, which cumulatively consist of over 1,000
3D scans of objects from different semantic categories that
can be inserted in MP3D environments. We create an au-
tomated infrastructure to generate paired egocentric tours
of initial/modified layouts of MP3D scenes populated with
different objects from GSO and YCB; we expect this infras-
tructure to be broadly useful beyond this task. We conduct
extensive experiments in this generated dataset to quantify
the impact of model choices in 3DSMNet against competi-
tive baselines.

To further demonstrate the usefulness of our approach and
data generation infrastructure, we show zero-shot transfer
results to scans of real environment rearrangements from the
Replica [32], Active Vision [2], and RIO [35] datasets. We
adapt our task to these environments and show 3D-SMNet
outperforms competitive baselines. Finally, we show that
jointly training on real and generated data results in signif-
icant improvements for re-identification in the RIO envi-
ronments – improving matching accuracy by +10% on real

environments compared to when the system is trained on
real data alone.

2. Related work

Re-identification has been extensively studied for class-
specific problems such as person re-ID [23, 30, 39, 40] or
vehicle re-ID [17, 19, 36, 44]. Typically, a system is provided
a query image and asked to rank a list of gallery images
by similarity. In contrast, we solve a matching problem
with 3D detections (not a ranking problem). In addition,
most existing works use 2D CNN [19, 23, 39, 44] or 2D
transformer features [17, 30]. We describe objects with 3D
features. In person re-ID, some works [5, 11, 43] do perform
re-identification in 3D, however these approaches leverage a
body model; we assume no access to 3D models.

3D Multi-Object Tracking (MOT). Most multi-object
trackers have a data association module used to match track-
lets with detections [12, 38, 41]. The score matrices asso-
ciated with these matchers are computed using proximity
metrics such as 3D-IoU [38], Euclidean distance [41] or Ma-
halanobis distance [12]. This differs from our problem as
we are trying to match objects based on their appearance
without any notion of physical distance.

In 2D-MOT, many methods include a ‘re-identification
module’ to handle long-term occlusions [1, 7, 34]. Unlike
our work, these methods use 2D detections and features.
Closest to our work is ODAM [20], where objects are de-
tected and associated using a learned matcher based on 2D
detections. A key difference is that in contrast to ODAM,
our approach aims to re-identify objects in 3D that have been
moved. To the best of our knowledge, we are not aware of
of any prior work on multi-class object re-identification of
3D detections, which is our focus.

Indoor multi-class 3D object re-identification. Replica
[32], ReplicaCAD [33], RIO [35] and Active Vision [3] are
interesting datasets to support indoor 3D object re-ID. They
all contain house meshes under different layouts. However,
Replica and Active Vision are too small to support training
and the object models in ReplicaCAD are the same across
all scenes which does not allow for testing generalization
to unseen instances. The RIO dataset consists of several
RGB-D scans semantically annotated of houses. We use the
RIO dataset for training and testing. We also report results
on the Replica and Active Vision datasets.

Multiple datasets from the robotic object rearrangement
domain exist [14, 18]. However, these datasets mostly focus
on small scenes (i.e. tabletop scenarios). Recently, object
re-arrangement tasks and datasets for Embodied AI domains
have appeared [6, 33], including efforts [33] that provide
pairs of large scenes with moved objects. However, the
differences between scenes is usually limited to a few objects
from the YCB dataset [8]. In our task we seek to scale the



number of scene differences by a factor of 10.
The Robotic Vision challenge [15] presents two tasks,

Semantic SLAM and Scene Change Detection (SCD) which
are closely related to our problem. In Semantic SLAM the
goal is to explore an environment and build an object-based
map of the scene. Three baselines have been submitted to
this challenge: two of them build object-based maps of a
point-cloud based 3D object detector (VoteNet) [25] and
the third one gets 3D detections from aggregated 2D depth
segmentations (via RGB-segmentations using MaskRCNN
[16]). Our approach to construct an object-based map from
one exploration is similar to the first set of approaches and
uses VoteNet [25] as well. In the SCD Challenge, an agent
explores an environment at two different times, its goal is to
output an object-based map of the scene with objects being
added or removed from the environment – note it does not
consider movement of objects. At the moment, no baseline
or submission has been reported for this task.

3. Multi-Object Re-identification from Tours
To recap, we consider a multi-object re-identification prob-
lem in 3D environments observed through egocentric tours.
Each problem instance (or episode) is defined by a pair of
egocentric tours through different layouts of the same envi-
ronment – an initial layout and a modified layout. Objects
in the initial layout may be moved, removed, or unchanged
in the modified layout. Further, new objects may be added
to the modified layout. The task is to re-identify objects
present in both layouts and identify objects which have been
removed or added. Notably, we do not constrict the two
tours to follow the same path.

To support this problem definition, we develop a proce-
dure to generate paired egocentric tours of initial/modified
layouts in the Habitat simulator [28, 33]. At a high level,
we use Matterport3D (MP3D) [9] environments and insert
YCB [8] and Google-scanned-objects [26] to create initial
and modified layouts.

3.1. Environments and Objects

The MP3D dataset contains 3D meshes of (mostly) home
environments that on average have 517.34m2 of floorspace.
These meshes also have semantic labels and we retain five of
the MP3D classes as part of our task: chair, bed, toilet, couch,
and potted plant. Similar to [10], we chose these as they
overlap with COCO classes [21] and correspond to common
objects in indoor scenes. However, objects in MP3D are part
of monolithic scene mesh and cannot be moved or removed.

Thus, we insert, move, and remove 3D object models
from the YCB [8] and Google-Scanned-Objects (GSO) [26]
datasets. We manually group GSO objects into semantic
categories and then select 10 categories from GSO and YCB:
bag, figurine, plant, puzzle-toy, vehicle-toy, lotion, puzzle-toy,
doll-toy, cartridge, dietary-supplement, shoe. Each object

category consists of multiple 3D models. In total, we use
632 models split into train/val/test such that no 3D model
repeats across splits. We scale the inserted 3D models up to
unrealistically sizes to improve their visibility in the egocen-
tric views and to align with what modern 3D object detectors
are capable of detecting. This assumption is a reflection of
the state of art and should be relaxed in the future as progress
is made.

3.2. Episode Creation

Episode creation is a three-step process: creating the initial
layout, modifying that layout, and generating egocentric
tours in both to serve as input.

Initial Layouts. To generate an initial layout, we sample
a floor in a MP3D environment and then insert 30 objects.
Objects models are sampled by class and then instance. The
sampled model is inserted in the environment at a random
location on either the floor or the top of a ‘receptacle’ support
surface. Receptacles include tables, sofas, counters, and beds
and are manually annotated with a support surface. Objects
are inserted ‘upright’, i.e. with their bounding boxes gravity-
aligned, and with random rotation about the vertical axis.
And then a collision detector is used to check if the insertion
was successful. If collisions exist, the sample is rejected and
we repeat this sampling procedure.

Modified Layouts. To create modified layouts, we move
and remove inserted objects from the initial layout and add
new ones. Specifically, we leave 1/3rd in the same position,
move 1/3rd to new locations, and remove 1/3rd then add
an equal number of new objects. New locations for moved
objects and inserted objects are sampled identically to the
procedure described above. This corresponds to modified
scenes with 30 objects – 10 moved, 10 unmoved, and 10 new
objects. This translates to 40 objects observed across the
tours with 20 being re-identifiable and 20 being removed or
added. We randomly rotate and translate the 3D environment
so models have to reason about relative arrangement and
visual appearance rather than absolute position to recognize
unmoved objects.

Egocentric Tours. We develop an iterative sampling pro-
cedure to build trajectories and then run a simulated agent
through the trajectory to collect an RGB-D tour. A set of
≈ 1000 locations are densely sampled in the environment
such that each is at least a meter from any obstacle. One of
these locations is sampled as the start location and then the
trajectory extends by sampling the next closest location at
least 2 meters away of the current location. A shortest-path
planner is used connect the locations. Once a location has
been selected, it is removed from the candidate set along
with any location within 2 meters. The tour is ended when
no next location is available. While this does not ensure full
coverage of all objects, we find the paths cover nearly the
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Figure 2. 3D-SMNet consists of a 3D object detector and a matching module. The 3D object detector [25] takes as input a textured
point-cloud representation of the scene and outputs a set of 3D detections along with feature descriptors. The matching module computes
similarity scores from the pairwise descriptors and then extends the score matrix with dustbin vectors estimated from an attention mechanism
over the two sets of features to capture added/removed objects. The Sinkhorn algorithm [31] is then applied to solve the partial assignment
problem.

entire environment.

Dataset Statistics. Following the strategy described, we
create 625 episodes split 461/65/126 between train/val/test.
This corresponds to a total of 24k, 3k, 7k unique object pairs.
Tours consist of 800 steps on average. It provides good space
coverage with 78% of objects being actually observed during
the tours.

4. 3D Semantic MapNet (3D-SMNet)
Our approach, named 3D Semantic MapNet (3D-SMNet)
and illustrated in Fig. 2, consists of two broad components:
(1) a 3D object detector that operates on RGB-D videos with
known pose, and (2) an object matching module that solves
correspondence estimation between two sets of 3D bounding
boxes.

4.1. 3D object detector

We experiment with the VoteNet [25] object detector.
VoteNet is a point-cloud based 3D object detector. We create
the point-cloud inputs for each layout by un-projecting the
depth pixels at each position along the camera trajectory us-
ing a pinhole camera model. We accumulate all unprojected
pixels of all frames accross the trajectory to generate a point-
cloud P with N ′ × 3 points. To avoid ceiling detections we
tilt the camera by a 22.5 deg rotation looking downwards.
Additionally, during the unprojection step, we ignore 3D
points un-projected 50 cm above the camera height. We
further preprocess the input by subsampling the accumulated
point-cloud P using a voxel resolution of 3 cm to only keep
N points in the point-cloud. Following this process results
in an average input dimension of 2M points.

VoteNet training. We train VoteNet on the 3D-SMNet
episodes (Matterport scenes [9] with YCB [8] and Google-

scanned objects [26]). Considering the very large point-
cloud, we train VoteNet on crops of the full point cloud. We
create a training set by selecting 4 × 3 × 4m crop regions
of the accumulated point cloud. We experimentally found
that selecting training crops centered on objects of interest
leads to better generalisation results. Please refer to the
supplement for training details and additional results.

VoteNet inference. At inference time, we use a sliding
window approach and apply the trained VoteNet module on
small point-cloud crops of dimensions 4 × 3 × 4m with a
stride of 2m, 1.5m, and 2m in the x, y, and z directions
(recall that the y-axis is the gravity-aligned axis). We ag-
gregate all the generated object proposals and then apply
non-maximum suppression (NMS) to remove duplicates. We
found that setting a confidence threshold of 0.99 with a NMS-
3D-IoU threshold of 0.05 led to the best object-detection
performance with a mean average precision (at 0.25 IoU
threshold) mAP@25 of 0.555, mAP@50 of 0.369, and an
Object Map Quality (OMQ) [15] of 0.14.

Object-based maps. We define an object-based map (M) as
a set of m objects such that M = {O1, ..., Om}. Each object
(O) is defined by its bounding-box centroid c = [cx, cy, cz]
and dimensions s = [sx, sy, sz], rotation θ (or ‘yaw’) of
the bounding-box about the gravity-aligned (y) axis, seman-
tic label l and a feature descriptor vector f ∈ Rd. These
object attributes are directly extracted from the VoteNet out-
puts. The descriptors are extracted from the PointNet++ [24]
backbone of VoteNet. For an object proposal, we retrieve the
seed points linked to that object and average their PointNet++
faetures.



Figure 3. 3D-SMNet qualitative results on MP3D scenes [9] with inserted YCB [8] and Google-scanned [26] assets. 3D-SMNet is able to
match ‘unchanged‘ objects like the red examples of the first and second columns. 3D-SMNet is also capable to re-identify objects located at
very different locations like the green example of the left column, the green example of the middle column, and the orange example of the
right column.

4.2. Matcher

For two layouts A and B with corresponding object-based
maps MA and MB , the goal is to match objects from both
maps and identify non-matchable objects (objects added or
removed in the scene). We define the two sets of object
descriptors A = {fA

1 , ...,fA
mA

} and B = {fB
1 , ...,fB

mB
},

with mA and mB as the total number of objects in MA and
MB . The final matching descriptors are computed from a
linear projection hA

i = WfA
i + b, ∀i ∈ A, and similarly

for B.

Matching module. The matching module is based upon the
optimal matching layer of SuperGlue [27]. At a high level,
it takes two sets of descriptors and produces an assignment
matrix P by solving a linear assignment problem. First,
we compute the pairwise object scores as the inner product
between the descriptors Si,j = ⟨hA

i ,h
B
j ⟩, ∀(i, j) ∈ A×B

resulting in a mA × mB score matrix S. This matrix can
be used to define an assignment problem, with each row i
defining the matching scores between object i in A and all
objects in B; and vice versa for column / object j in B. To
account for objects that may not have matches, [27] append
an additional row and column to S corresponding to ‘dustbin’
objects that objects in A or B should match with if they have
no true match in the other set. All scores in these dustbin
entries are based on a single learnable parameter.

To be more responsive to individual episodes, we instead
compute these dustbin entries based on the object represen-
tations. Specifically, we add the dustbin column and row
as Si,mB+1 = zAi , SmA+1,j = zBj , with zA ∈ RmA and

zB ∈ RmB . The dustbin score vectors zA and zB are es-
timated using an attention mechanism from the two sets
of matching descriptors {hA

1 , ..., h
A
mA

} and {hB
1 , ..., h

B
mB

}.
We start by computing attention weights from the first set
of matching descriptors conditioned on a matching descrip-
tor vector of the other set. The attention weights matrix
W is computed from a 3-layer attention MLP module:
Wi,j = MLP([hA

i ;h
B
j ]), where [; ] is the concatenation op-

erator. To compute the first dustbin score vector zA we
softmax the W matrix along the second dimension to ob-
tain the probability matrix Ŵi,j =

exp(Wi,j)∑mB
j=1 exp(Wi,j)

. We then

compute the attention features as the weighted sum of the
matching descriptors: ai =

∑mB

j=1 Wi,jh
B
j ∀i ∈ A. The

final values in vector zA are computed from a final 3-layer
MLP module: zA

i = MLP([hA
i ;ai]). The same process is

used to compute the dustbin vector zB by exchanging the
roles of A and B above.

Given this updated score matrix S′ including the dust-
bin entries, we generate matching assignments using the
Sinkhorn algorithm [13, 31], which is a differentiable ver-
sion of the Hungarian algorithm [22] for bipartite matching.
Sinkhorn produces an assignment matrix P where Pi,j de-
notes the probability of matching object i ∈ A and j ∈ B.

Loss. 3D-SMNet is trained in a supervised fashion using the
ground-truth matches M = {(i, j)} ∈ A × B and ground-
truth unmatchable objects UA ∈ A and UB ∈ B. Optimiza-
tion is done by minimizing the negative log-likelihood of the



assignment matrix P :

L = − log
∏

i,j∈M
Pij

∏
i∈UA

Pi,mB+1

∏
j∈UB

PmA+1,j (1)

where the first term guides the model towards matching ob-
jects observed in both layouts whereas the latter two terms
push unmatchable objects towards the dustbins. As the
Sinkhorn algorithm is differentiable, matcher parameters
are learned directly to optimize these assignments.

5. Experiments

Evaluation Metrics: We report the entire range of evalua-
tion metrics for object re-identification in a query-to-gallery
setup: Cumulative Matching Characteristics (CMC) [37] and
mean Average Precision (mAP) [42]. CMC-k (or rank-k)
is the probability that the correct matched object of a given
query object appears in the top-k ranked object list. We also
report the overall matching accuracy in a multi-query-to-
gallery setup (assuming one match per instance possible). It
is computed as the total of correctly matched objects in the
layout B over the total number of objects in layout B. In
addition, we measure the overall task performances using
accuracy, precision and recall computed from the matches
tuples. We start by assigning unique ids to object propos-
als by matching detections to ground-truth objects using a
threshold over 3D-IoUs. From the detections and predicted
matches we create object tuples (objA, objB). If a detected
object has not been matched, we leave the corresponding
entry null in the tuple. A tuple is considered as a true positive
(TP) if the same tuple exists in the ground-truth matches. We
similarly compute false positive (FP) and false negative (FN),
and report the corresponding accuracy, prediction and recall.
These metrics also account for detection performances.
Implementation details: We choose a confidence threshold
of 0.99 to retain object proposals. The extracted object
descriptors are of dimension 256. The attention MLP module
and the final MLP module both have the same architecture
with three layers of dimensions 256, 64 and 1. Training takes
approximately 6 hours on a single Titan-X with a batch-size
of 8 and a learning rate of 5 · 10−3.
Experiments with different matchers: We compare 3D-
SMNet with different matchers. We experiment with the
Hungarian algorithm with different score functions. We
tested the L2 and Mahalanobis distances, and learning a
1-layer mapping of the descriptors prior to using the L2

distance to compute the score matrix. We train this one
linear layer using a triplet loss function [4].

L(a, p, n) = max{||a− p||2 − ||a− n||2 +m, 0}, (2)

with a, p, n the anchor, positive and negative object descrip-
tors. We experimentally set the margin value m to 1.0 (see

suppl. for more details). In addition, we compare our model
to a Sinkhorn matcher (S) without the attention model to
estimate the dustbin vectors zA and zB . Instead we set the
dustbin vectors values to a single trained parameters as in
[27].

Oracle experiments: To set upper bounds on our study,
we run two additional experiments. The first (GTmatch)
assumes an oracle matcher. Given two sets of detections,
this matcher perfectly matches the detections. In the second
(GTbox), we assume ground-truth detections. In this case,
we extract features for each ground-truth object using our
trained VoteNet [25] detector and then match objects using
our trained model. Features are extracted by cropping the
seed points using the 3D bounding box of the ground-truth
object and averaging the seeds’ PointNet++ [24] features.

6. Results
Table 1 shows the matching performances of 3D-SMNet
compared to different baselines and Fig. 6 reports the
matching metrics of 3D-SMNet split across super-categories
(‘moved’, ‘added’, and ‘removed’).

Our first two sets of experiments, Hungarian-L2 (H-L2)
and Hungarian-Mahalanobis (H-M) are both working with
the Hungarian algorithm solver with the L2 and Mahalanobis
distances respectively. We notice that while the Mahalanobis
normalized L2 distance increases the matching accuracy
slightly (28.82 → 31.44), for all other metrics (rank@1,
rank@5 and mAP) the L2 distance yields better performance
(Tab. 1 rows 1 and 2).

Learning a mapping for matching features. Our third
experiment, Hungarian 1L (H-1L), uses the Hungarian algo-
rithm with a L2 distance score. However, prior to measuring
the distance, we map the descriptors to a higher dimensional
feature using a linear layer trained under a triplet loss [4].
This leads to an increase in performance on all metrics (line 3
vs. lines 1 and 2 of Tab. 1) and across all super-categories of
objects (yellow bars compared to the blue and red ones from
Fig. 6). This suggests that good features for matching can
be derived from the extracted descriptors of VoteNet [25].
Additionally, we observe from Fig. 6 that on this first set of
three experiments (H-L2, H-M, H-1L) the performance on
the ‘added’ objects sup-category is overall very low (< 0.5%
matching accuracy). We explain this result by the fact that
the Hungarian algorithm cannot, by design, properly handle
objects without any counterpart.

Handling added and removed objects. Recall that our
matcher adds an extra dustbin column and row to the score
matrix to handle unmatchable objects. We see a drastic im-
provement of the matching accuracy on the ‘added’ objects
with +51% compared to the classical Hungarian baselines
(see green bar compared to the blue, red and yellows ones
under the ‘added’ category of Fig. 6). This also leads to an



Figure 4. 3D-SMNet qualitative results on the Replica scenes [32]. On this zero-shot experiment, 3D-SMNet is able to detect and re-identify
‘unchanged’ objects (like the plant in purple) and ‘moved’ objects (like the couch in blue and chair in orange).

MP3D Replica
rank@1 rank@5 mAP Acc rank@1 rank@5 mAP Acc

H-L2 42.32 ± 0.12 70.94 ± 0.13 55.51 ± 0.11 28.82 ± 0.09 41.59 ± 0.23 100.00 ± 0.00 62.54 ± 0.15 24.91 ± 0.11

H-M 38.18 ± 0.13 58.74 ± 0.13 48.24 ± 0.12 31.44 ± 0.10 41.83 ± 0.20 95.84 ± 0.08 61.21 ± 0.13 21.42 ± 0.12

H-1L 62.18 ± 0.10 90.53 ± 0.06 74.45 ± 0.08 41.70 ± 0.07 33.28 ± 0.22 95.77 ± 0.08 55.86 ± 0.16 25.02 ± 0.09

Sinkhorn 68.83 ± 0.07 94.42 ± 0.04 79.75 ± 0.06 58.33 ± 0.05 21.12 ± 0.14 87.54 ± 0.12 47.43 ± 0.12 30.51 ± 0.10

3D-SMNet 72.85 ± 0.08 94.84 ± 0.04 82.36 ± 0.06 64.35 ± 0.06 29.29 ± 0.14 95.82 ± 0.08 53.63 ± 0.11 33.88 ± 0.10

GTbox 87.74 ± 0.06 98.83 ± 0.01 92.49 ± 0.04 81.30 ± 0.05 65.66 ± 0.06 97.23 ± 0.02 79.92 ± 0.04 52.63 ± 0.06

Table 1. 3D-SMNet test-set matching results on the Matterport scenes [9] with YCB [8] and Google-scanned [26] assets and on the Replica
scenes [32]. 3D-SMNet (line 5) outperforms all the baselines (lines 1-4) on all the metrics on the Matterport scenes. 3D-SMNet performs
best on the matching accuracy on the zero-shot experiments with the Replica scenes. The GTbox experiment reports numbers working with
ground-truth detections setting up an upper bound for our study.

Figure 5. 3D-SMNet qualitative results on the Active Vision dataset
[32]. On this zero-shot experiment on real data, 3D-SMNet is able
to detect and re-identify ‘unchanged’ objects (like the couch in
blue) and ‘moved’ objects (like the two chairs in red and chair in
orange).
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Figure 6. 3D-SMNet breakdown matching accuracy per object
super-category on the test set of the Matterport scenes [9].

increase in all metrics on all object super-categories as we
see from Tab. 1 comparing line 4 to the lines 1-3.

Estimation of the dustbin scores per episode. Putting

all the pieces together, 3D-SMNet shows the best perfor-
mances on all metrics across the board (line 5 of Tab. 1) with
+6% on matching accuracy, +2.6% on mAP, and +4% on
rank@1. We also see a similar increase in performance for
all super-categories (orange bar of Fig. 6). This suggests
that predicting the dustbin score values given two sets of
descriptors is valuable. We experimentally find that across
all episodes in the test set the average and standard deviation
of the dustbin values are 46.25 and 29.24. The large variance
in dustbin values highlights the importance of considering
multiple values over just a single parameter. In addition,
we also compare 3D-SMNet to an experiment conducted
with ground-truth bounding boxes (GTbox). We observe a
drop in performance (lines 6 and 5 from Tab. 1) highlight-
ing the impact of detections on matching. Qualitatively, we
find that 3D-SMNet yields good results. Fig. 3 reports three
samples with detection and re-identification results on Mat-
terport [9] with new assets [8, 26]. 3D-SMNet is capable
of re-identifying objects detected at different locations as
depicted by the bright green examples of the first and sec-
ond columns in Fig. 3, and the orange example in the third
column.

Using simulated episodes as data augmentation. We con-
duct experiments using the RIO dataset [35]. RIO has 1335
point clouds of houses that we select to create 903 episodes



training dataset rank@1 rank@5 mAP Acc

MP3D 49.46 ± 0.50 100.00 ± 0.00 70.00 ± 0.29 51.49 ± 0.31

RIO 51.68 ± 0.49 100.00 ± 0.00 71.36 ± 0.28 51.40 ± 0.29

RIO + MP3D 62.76 ± 0.52 97.38 ± 0.14 76.53 ± 0.32 61.13 ± 0.33

Table 2. 3D-SMNet matching results on the validation set of RIO
[35] when trained with different datasets. 3D-SMNet performs best
when trained jointly on real (RIO) and simulated (MP3D) episodes.

split into train and val. We create ground-truth object pairs
for each episodes using the instance level annotations of the
dataset keeping a subset of categories: chair, bed, couch, TV,
plant and toilet. We train 3D-SMNet on both the RIO and
simulated episodes and compare the performances when the
network is trained on RIO or simulated episodes separately.
We find from Tab. 2 that using simulated episodes as addi-
tional data helps with an increase in performances of +10%
on matching accuracy and rank@1 and +5% on mAP . Ad-
ditionally, we also notice that training on simulated data only
already provides good results. We observe a decrease of
only 0.09% on accuracy and −2.22% on rank@1 compared
when training on RIO only.

Zero-shot experiments on photorealistic environments.
Next, we test our method on the photorealistic Replica
dataset [32]. We select the 6 FRL apartment scenes and
create 15 episodes by combining pairwise layouts. We con-
sider the 4 overlapping object categories with our previous
study: chair, bed, couch, and potted plant. The results are
shown in Tab. 1. On this zero-shot experiment we observe
that our method performs the best in terms of matching accu-
racy with +3.3% increase compared to other baselines (see
line 5 vs. 1-4). However, 3D-SMNet is outperformed on
all other metrics by H-L2 and H-M. We explain this result
because, first the Replica scenes do not have many objects
added or removed in the scene and therefore the use of dust-
bins scores becomes obsolete, and second because the three
matchers H-1L, S and 3D-SMNet are trained on Matterport
scenes and objects. Nevertheless, we find that 3D-SMNet
yields convincing qualitative results as depicted in Fig. 4.
3D-SMNet is capable of re-identifying objects at the same
positions like the plant in purple. More importantly, 3D-
SMNet can re-identify objects located at different locations
in the apartment. The chair in orange and couch in blue are
both detected and re-identified correctly.

Zero-shot experiments on more challenging real data.
We also test 3D-SMNet on the Active Vision dataset [3].
Active Vision has 9 unique scenes that were scanned two
times under two different layouts using a robot equipped
with a Microsoft Kinect device. Each scan consists of a
sequence of RGB-D images recorded on a grid map of the
scene. At each node on the grid, 12 frames are recorded
at 30deg rotational intervals. The camera intrinsics and
camera poses were originally estimated from structure-from-

MP3D Replica RIO
Acc Precision Recall Acc Precision Recall Acc Precision Recall

H-L2 10.29 ±0.04 21.66 ±0.07 16.39 ±0.05 2.63 ±0.01 6.88 ±0.04 4.09 ±0.02 2.82 ± 0.02 6.31 ± 0.06 4.86 ± 0.04

H-M 10.84 ±0.03 22.70 ±0.06 17.18 ±0.05 2.70 ±0.02 7.08 ±0.05 4.18 ±0.03 2.94 ± 0.02 6.50 ± 0.03 4.95 ± 0.03

H-1L 15.19 ±0.03 30.62 ±0.06 23.16 ±0.04 2.68 ±0.01 7.00 ±0.04 4.15 ±0.02 2.89 ± 0.02 6.41 ± 0.05 5.00 ± 0.04

Sinkhorn 21.08 ±0.03 39.48 ±0.05 31.15 ±0.04 2.82 ±0.01 7.30 ±0.03 4.40 ±0.02 3.07 ± 0.03 6.78 ± 0.06 5.34 ± 0.04

3D-SMNet 24.59 ±0.04 44.86 ±0.06 35.23 ±0.05 3.31 ±0.01 8.55 ±0.04 5.12 ±0.02 3.64 ±0.03 8.01 ±0.06 6.26 ±0.05

GTmatch 40.38 ±0.05 65.09 ±0.06 51.54 ±0.06 10.32 ±0.03 24.41 ±0.08 15.16±0.04 5.77 ± 0.04 12.40 ± 0.08 9.76 ± 0.07

GTbox 69.29 ±0.07 81.86 ±0.05 81.86 ±0.05 29.58 ±0.05 45.65 ±0.06 45.65±0.06 35.77 ±0.18 52.64 ±0.19 52.64 ±0.19

Table 3. 3D-SMNet detection and re-ID performances on Matter-
port [9], Replica [32] and RIO [35] scenes. 3D-SMNet (line 5)
outperforms the baselines (lines 1-4) on all metrics. The GTbox
and GTmatch rows report numbers working with ground-truth de-
tections and an oracle matcher, setting up an upper bound for our
experiment.

motion using COLMAP [29]. We reconstruct the point-
clouds by unprojecting pixels using a pinhole camera model
as described in Sec. 4.1. The Active Vision dataset does
not provide 3D annotation information that would allow us
to measure the performances of 3D-SMNet. Instead we
qualitatively assess the results on this dataset (see Fig. 5).
We observe that despite having a noisier point-cloud, 3D
SMNet is able to detect and re-ID objects. On Fig. 5 3D-
SMNet detects and re-ID ‘unchanged‘ objects like the couch
in blue and ‘moved‘ objects like the two chairs in red and
orange.
Detection and re-Identification measured jointly. We also
measure the overall task performance (detection and re-ID)
with accuracy, precision and recall metrics in Table 3. We
find that 3D-SMNet outperforms all baselines on both the
Matteport and Replica datasets (rows 5 compared to 1-4).
We also report experiments with ground-truth detections
(GTbox) and and an oracle matcher (GTmatch). We notice
a gap in performance comparing 3D-SMNet with GTmatch
and GTbox (lines 5 and 6). This suggests there is room for
improvements for detection, −44.75% drop on Acc from
3D-SMNet to GTBox on Matterport −26.27% on Replica
and −32.13% on RIO. We make a similar observation on
the matcher side with a drop on Acc of −15.8 on Matterport,
−7.01 on Replica and −2.12% on RIO.

7. Conclusion
In this work, we studied the task of object re-identification
in 3D environments across egocentric tours. Our proposed
object-based map model called 3D-SMNet converts local-
ized egocentric RGB-D videos to sets of localized 3D object
bounding boxes with associated feature vectors. We develop
an automated pipeline to generate paired egocentric tours
of 3D environments under different layouts where objects
may be moved, removed, retained, or added. We evaluate
our model on this dataset and established a competitive base-
line for the task. We also train and evaluate 3D-SMNet on
real data. Furthermore, we show jointly training on real and
simulated episodes lead to significant improvements over
training on real data only. 3D-SMNet also demonstrates
great performances on zero-shot experiments on real data.
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8. Appendix
8.1. Details on the new assets

We start by manually labeling assets in the Google-scanned
objects dataset [26] that do not have a semantic label. We
also re-labeled assets with pre-existing semantic class that
are too broad (e.g. ‘consumer goods’). Assets are labeled
using names in an unconstrained fashion. We simply assign
the name that best describe the object. We then cluster all the
labels into 43 object categories shown in Fig. 8. From that list
we decide to keep the top 10 classes with the most number
of instances and combined them with the YCB dataset [8].
The final object distribution is shown in Fig. 7.

Figure 7. Category distribution of assets inserted in the simulated
episodes in Habitat [28] with the Matterport3D scenes [9].

Each object consists of a 3D model. Following this pro-
cedure we select 632 models that we split into train/val/test
per category. We ensure that all object categories are repre-
sented in each split and no model repeats across splits. In
addition, we scale up the models to unrealistic sizes in order
to improve their visibility in the egocentric view and to better
align with the 3D object detectors capacities. For each ob-
ject we sample a size variable t from a uniform distribution
between 1.0m and 1.5m. We then compute a scaling factor
s using the sampled size t and the length l of the largest side
of the 3D model as s = t

l . Lastly, we scale up the model
along the three dimensions using the scaling factor s.

8.2. Example of the generated episodes and trajec-
tories

Recall that the task is to re-identify objects present in both
layouts and identify objects which have been removed or
added. Specifically, we do not constrict the two tours to
follow the same path. An example episode is shown in Fig. 9
from a top-down view. Blue lines indicate the tours and
objects are marked with bounding boxes. Fig. 9 also shows
the downward-looking egocentric view.

8.3. Details on architectures and feature extraction.

Each detection is associated with a vector descriptor ex-
tracted from the VoteNet backbone: PointNet++ [24]. We
start by retrieving the cluster of seed points related to that
detection. We then average the PointNet++ features of all
the seeds in that cluster. The extracted features from VoteNet

[25] have a dimension of 256. The linear layer used to com-
pute the final matching descriptors has a dimension of 256.
The attention MLP and the final MLP modules have the same
architecture with three linear layers of dimensions 256, 64
and 1 combined with rectified linear unit functions.

8.4. VoteNet [25] training details

Tab. 4 shows the VoteNet performances under different train-
ing regimes. We train VoteNet on small crops of the full
point cloud. We select 4× 3× 4m regions (in the (x, y, z)
dimensions) centered around objects of interests. We con-
duct multiple experiments on training VoteNet with crops
selected from the entire point-cloud using a sliding window
approach with a stride of 2m, 1.5m and 2m in the x, y and z
directions. We find that training VoteNet with crops centered
around objects leads to the best generalization performances
(lines 2-3, lines 4-5 and lines 6-7 from Tab. 4). The network
is trained from scratch using a batch size of 8 and a learning
rate of 1e−3. VoteNet is originally designed to work with un-
textured point cloud. We extended its architecture to include
the RGB information as input and found that it significantly
improves the performances (lines 1-2 from Tab. 4). In addi-
tion, we use the data augmentation technique proposed by
VoteNet which consist of random flips and random rotations
along the up-right axis. We find that using data augmentation
VoteNet performs better (lines 3 and 5 from Tab. 4). We also
use the scheduler from VoteNet and find that it boosts the
performances a little more (lines 5 and 7 from Tab. 4).

Table 4. VoteNet performances on the validation set tested under
different training settings.

object-centered crops RGB data aug. scheduler mAP@25 mAP@50

- - - - 50.566 29.963

- ✓ - - 54.355 33.369
✓ ✓ - - 50.582 34.265

- ✓ ✓ - 53.916 33.788
✓ ✓ ✓ - 58.408 38.693

- ✓ ✓ ✓ 56.151 35.819
✓ ✓ ✓ ✓ 58.170 40.331

8.5. Matching performances when using differ-
ent features extracted at different stages in
VoteNet.

In this section we study the impact of using different features
from VoteNet [25] on the final matching results. Specifi-
cally, we extract features from the backbone model, Point-
Net++ [24], and from the last layer of the proposal module of
VoteNet. The proposal module is the last element of VoteNet
that converts the clustered seed points into object proposal.
Tab. 5 shows the performance comparison between two sets
of experiments using the PointNet++ features (lines 8-13)
and the proposal features (lines 1-7). We observe that on all
object super-category combined, 3D-SMNet performes best
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Figure 8. Category distribution of all the Google-scanned objects. We keep the 10 most predominant catgories in our study (up to, and
including, the ‘bag‘ category)

.

Figure 9. Example multi-object re-identification episode: The two layouts are shown in a top-down view, the agent exploration trajectories
are drawn in blue, and bounding boxes show objects of interest. Colors of bounding-boxes indicate correspondences.

on all metrics when using the PointNet++ features (lines
7 and 12). We also see that the two baselines Sinkhorn
and Hungarian-1L have better performances using the Point-
Net++ features (lines 3 and 10, and lines 6 and 11). The two
other baselines Hungarian-L2 and Hungarian-Mahalanobis
show better performances when using the proposal features.
We explain this phenomena because these two baselines do
not involve any training.

8.6. Hungarian with one, two or three layers MLP.

We experiment with a baseline using the Hungarian matching
module with the L2 distance to compute the score matrix.
Prior to computing the scores we map the descriptors to
a matching feature space using a one-linear layer model
of dimension 256. We train this layer using a triplet loss.
We create a dataset using the detection proposals of each
environment pairs. We start by computing the ground-truth
object matches by assigning a unique id to proposals using a

3D-IoU threshold over the set of ground-truth objects. We
create tuples of the form (a, p, n) with an object anchor, its
ground-truth match and another object randomly sampled in
the scene. a, p and n are the anchor, positive and negative
object descriptors associated to the object anchor, its match
and the other randomly selected object respectively. We
set the margin to 1 and use the L2 metric as a measure of
distance to train against the triplet loss. We train this model
during 50 epoches with a batch size of 64 and learning rate of
1.5e− 2. We additionally experiment with a two-layers and
three-layers MLP. We found that as we increase the number
of layers the performances decrease as shown in lines 3-5 of
Tab. 5, suggesting the model is over-parameterized.

8.7. Evaluation for each object super-categories.

In Tab. 5 we perform matching evaluation for each object
super-categories (‘added’, ‘moved’, ‘unchanged’) in the test
set of the Matterport scenes [9]. 3D-SMNet consistently out-



Table 5. 3D-SMNet test-set matching results on the Matterport scenes [9] with new assets detailed over all object super-categories.

feature type ALL moved added unchanged
rank@1 rank@5 mAP Acc rank@1 rank@5 mAP Acc Acc rank@1 rank@5 mAP Acc

H-L2 proposal 43.97 ± 0.09 69.86 ± 0.09 56.06 ± 0.09 29.25 ± 0.06 49.28 ± 0.16 65.48 ± 0.13 57.69 ± 0.13 37.93 ± 0.13 1.71 ± 0.03 43.11 ± 0.10 70.56 ± 0.10 55.80 ± 0.10 36.14 ± 0.09

H-M proposal 45.03 ± 0.10 67.97 ± 0.11 56.01 ± 0.10 35.08 ± 0.07 56.06 ± 0.15 75.72 ± 0.13 65.82 ± 0.13 53.56 ± 0.14 1.15 ± 0.03 43.27 ± 0.11 66.74 ± 0.12 54.44 ± 0.10 42.28 ± 0.11

H-1L proposal 61.64 ± 0.09 91.06 ± 0.07 74.31 ± 0.08 40.75 ± 0.06 74.02 ± 0.11 97.15 ± 0.04 83.88 ± 0.07 61.85 ± 0.13 1.47 ± 0.03 59.67 ± 0.10 90.09 ± 0.08 72.78 ± 0.08 49.14 ± 0.10

H-2L proposal 60.57 ± 0.10 91.25 ± 0.07 73.81 ± 0.08 39.85 ± 0.06 73.34 ± 0.14 97.59 ± 0.04 83.83 ± 0.08 59.59 ± 0.12 1.49 ± 0.03 58.54 ± 0.10 90.24 ± 0.08 72.22 ± 0.09 48.18 ± 0.09

H-3L proposal 59.99 ± 0.09 91.38 ± 0.07 73.26 ± 0.07 38.22 ± 0.06 74.50 ± 0.10 98.47 ± 0.04 84.43 ± 0.07 58.06 ± 0.13 1.23 ± 0.02 57.67 ± 0.10 90.24 ± 0.08 71.47 ± 0.08 46.14 ± 0.10

Sinkhorn proposal 61.44 ± 0.10 92.02 ± 0.08 74.19 ± 0.09 54.85 ± 0.06 76.00 ± 0.11 97.64 ± 0.04 84.81 ± 0.07 66.19 ± 0.11 55.63 ± 0.09 59.11 ± 0.11 91.12 ± 0.09 72.49 ± 0.10 52.78 ± 0.09

3D-SMNet proposal 66.88 ± 0.10 92.85 ± 0.07 78.19 ± 0.08 60.06 ± 0.07 79.48 ± 0.12 97.91 ± 0.04 87.51 ± 0.08 68.68 ± 0.14 63.10 ± 0.09 64.88 ± 0.11 92.05 ± 0.07 76.71 ± 0.08 57.76 ± 0.10

H-L2 pointnet++ 42.15 ± 0.12 70.79 ± 0.12 55.36 ± 0.11 28.69 ± 0.09 27.45 ± 0.13 54.12 ± 0.16 40.34 ± 0.12 24.35 ± 0.13 0.44 ± 0.01 44.41 ± 0.14 73.35 ± 0.14 57.67 ± 0.13 37.96 ± 0.13

H-M pointnet++ 38.21 ± 0.13 58.66 ± 0.12 48.23 ± 0.12 31.40 ± 0.10 26.61 ± 0.12 51.02 ± 0.14 37.87 ± 0.10 27.45 ± 0.13 0.22 ± 0.01 40.00 ± 0.15 59.84 ± 0.14 49.82 ± 0.14 41.50 ± 0.14

H-1L pointnet++ 62.06 ± 0.10 90.52 ± 0.06 74.37 ± 0.08 41.65 ± 0.07 55.06 ± 0.14 84.63 ± 0.09 67.94 ± 0.11 42.41 ± 0.14 0.45 ± 0.02 63.13 ± 0.12 91.43 ± 0.07 75.35 ± 0.09 54.01 ± 0.11

Sinkhorn pointnet++ 68.83 ± 0.09 94.44 ± 0.04 79.77 ± 0.07 58.35 ± 0.06 56.91 ± 0.14 89.62 ± 0.09 70.52 ± 0.10 49.88 ± 0.11 51.49 ± 0.09 70.66 ± 0.10 95.19 ± 0.05 81.19 ± 0.08 61.79 ± 0.09

3D-SMNet pointnet++ 72.84 ± 0.09 94.83 ± 0.04 82.35 ± 0.07 64.33 ± 0.06 64.28 ± 0.13 92.22 ± 0.07 75.98 ± 0.09 56.31 ± 0.13 61.81 ± 0.08 74.16 ± 0.10 95.23 ± 0.05 83.33 ± 0.08 66.37 ± 0.09

GTbox pointnet++ 87.74 ± 0.06 98.83 ± 0.01 92.49 ± 0.04 81.27 ± 0.05 85.55 ± 0.09 98.58 ± 0.03 91.48 ± 0.05 78.19 ± 0.09 69.39 ± 0.06 88.02 ± 0.06 98.87 ± 0.01 92.62 ± 0.04 84.49 ± 0.06

Table 6. 3D-SMNet test-set detection and re-ID results on the Matterport scenes [9] with new assets detailed over all object super-categories.

All moved added unchanged
Acc Precision Recall Acc Precision Recall Acc Precision Recall Acc Precision Recall

H-L2 10.33 ± 0.04 21.73 ± 0.07 16.44 ± 0.05 0.13 ± 0.01 0.17 ± 0.01 0.61 ± 0.03 0.45 ± 0.01 0.58 ± 0.02 1.87 ± 0.06 10.65 ± 0.04 24.05 ± 0.09 16.04 ± 0.06

H-M 10.88 ± 0.04 22.77 ± 0.07 17.24 ± 0.05 0.25 ± 0.01 0.31 ± 0.01 1.21 ± 0.05 0.22 ± 0.01 0.29 ± 0.01 0.87 ± 0.03 11.09 ± 0.04 24.91 ± 0.09 16.66 ± 0.06

Hungarian-1L 15.24 ± 0.03 30.71 ± 0.06 23.23 ± 0.04 0.25 ± 0.01 0.31 ± 0.01 1.23 ± 0.05 0.45 ± 0.01 0.60 ± 0.02 1.81 ± 0.06 15.70 ± 0.04 33.89 ± 0.07 22.62 ± 0.05

Sinkhorn 21.03 ± 0.04 39.40 ± 0.06 31.08 ± 0.05 2.08 ± 0.02 2.81 ± 0.03 7.46 ± 0.08 34.19 ± 0.09 41.04 ± 0.11 67.22 ± 0.11 17.56 ± 0.03 36.22 ± 0.07 25.42 ± 0.04

3D-SMNet 24.53 ± 0.04 44.77 ± 0.06 35.17 ± 0.05 2.25 ± 0.03 3.06 ± 0.04 7.87 ± 0.10 37.86 ± 0.09 44.86 ± 0.11 70.84 ± 0.11 20.48 ± 0.04 41.57 ± 0.07 28.77 ± 0.05

GTmatch 40.41 ± 0.05 65.21 ± 0.06 51.52 ± 0.05 4.88 ± 0.04 6.23 ± 0.06 18.40 ± 0.15 50.97 ± 0.09 58.34 ± 0.10 80.15 ± 0.08 34.85 ± 0.05 63.33 ± 0.05 43.66 ± 0.06

GTbox 69.30 ± 0.08 81.86 ± 0.05 81.86 ± 0.05 30.18 ± 0.25 46.25 ± 0.29 46.25 ± 0.29 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 67.29 ± 0.10 80.44 ± 0.07 80.44 ± 0.07

performs baseline approaches on all super-categories across
all metrics (lines 8-12). Tab. 5 also reports numbers on
the oracle experiment working with ground-truth detections
(GTbox). In this experiment we use the 3D-SMNet matcher
module to match ground-truth detections. It measures the
impact of the false-positive and false-negative detections on
the overall matching performances. We observed a decrease
of 17% on the matching accuracy (lines 12 and 13) sug-
gesting that a better detector would lead to better matching
outcomes. In Tab. 6 we perform join detection and re-ID eval-
uation for each object super-categories (‘added’, ‘moved’,
‘unchanged’) in the test set of the Matterport scenes [9].
3D-SMNet consistently outperforms baseline approaches on
all super-categories across all metrics (lines 1-5). Fig. 10,
Fig. 11 and Fig. 15 show additional qualitative results on the
Matterport [9] Replica [32] and Active-Vision [3] scenes.

8.8. Precision Recall analysis on Replica and RIO.

We compute the precision-recall curves by varying the match-
ing threshold for the different models on the RIO [35] and
Replica [32] datasets. We observe on Fig. 13 that all models
perform better than random accross all matching thresholds
on the zero-shot transfer on Replica scenes. We notice on
Fig. 14 that above a certain matching threshold models tends
to perform worst than random on the RIO scenes. The preci-
sion value for the random model is higher due to a smaller
number of object instances present in scenes. Nevertheless,
3D-SMNet performs better with a precision of 1.0 at recall
0.9.

8.9. Baseline results comparison on RIO [35] when
trained with different datasets.

We report in Tab. 7 models performance comparison when
trained with simulated data only (MP3D), on real data only
(RIO) and on a combination of real and simulated data
(RIO+MP3D). For the RIO+MP3D experiments we create
a training set with the same amount of RIO and MP3D
episodes. All evaluation numbers are reported on the valida-
tion set of RIO. Across each model we observe an increase
in performances when the models are trained on both simu-
lated and real data. This result strengthen the argument that
using simulated episode as data augmentation helps boost
the matching performances. We also notice that under each
training regime 3D-SMNet outperforms all baselines. This
result aligns with the outcome of the experiments on the
Matterport3D and Replica datasets [9, 32]. Fig. 12 shows
qualitative results on the RIO datasets [35].

8.10. Limitations

Our approach is fundamentally limited by the current state
of the art in 3D detection as it serves as the foundation of
our method. Whether training end-to-end models for this
problem instead could be beneficial is not examined in this
work. Our evaluation setting is also limited by the availability
of 3D assets for insertion and the variety of 3D scenes to
serve as environments. Choices we’ve made in selecting
the objects and settings naturally result in a closed-world
problem whereas object re-identification in real homes might
face many new objects. Such research may be applicable to
building a new generation of home assistant. One potential



Figure 10. 3D-SMNet qualitative results on MP3D scenes [9] with inserted YCB [8] and Google-scanned [26] assets.



Figure 11. 3D-SMNet qualitative results on Replica scenes [32].



Figure 12. 3D-SMNet qualitative results on RIO scenes [35]



0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.2

0.4

0.6

0.8

1.0
Pr

ec
isi

on
Models

3D-SMNet
Random
Sinkhorn
H-1L
H-M
H-2L

Figure 13. Matching performances precision-recall curves of the different models on the Replica dataset [32]
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Figure 14. Matching performances precision-recall curves of the different models on the Rio dataset [35]

negative impact that stands out from these applications is
related to the privacy aspect. Potential users would need
to be comfortable having a home robot or a pair of smart
glasses that observe and create maps and representations of
indoor homes



Figure 15. 3D-SMNet qualitative results on Active-Vision scenes [3]



Table 7. 3D-SMNet and baseline matching results on the validation set of RIO [35] when trained with different datasets. 3D-SMNet performs
best when trained jointly on real (RIO) and simulated (MP3D) episodes.

training dataset rank@1 rank@5 mAP Acc
H-L2 N/A 57.91 ± 0.33 92.90 ± 0.00 69.26 ± 0.21 45.07 ± 0.33

H-M N/A 58.02 ± 0.29 91.33 ± 0.06 67.30 ± 0.11 44.47 ± 0.37

H-1L MP3D 49.27 ± 0.59 100.00 ± 0.00 70.85 ± 0.35 39.14 ± 0.32

Sinkhorn MP3D 54.79 ± 0.47 100.00 ± 0.00 70.00 ± 0.31 47.83 ± 0.29

3D-SMNet MP3D 49.46 ± 0.50 100.00 ± 0.00 70.00 ± 0.29 51.49 ± 0.31

GTbox MP3D 60.74 ± 0.20 94.72 ± 0.12 75.42 ± 0.14 53.48 ± 0.21

H-1L RIO 54.20 ± 0.56 97.55 ± 0.13 71.60 ± 0.35 45.94 ± 0.34

Sinkhorn RIO 54.80 ± 0.51 97.44 ± 0.14 71.99 ± 0.31 50.36 ± 0.36

3D-SMNet RIO 51.68 ± 0.49 100.00 ± 0.00 71.36 ± 0.28 51.40 ± 0.29

GTbox RIO 61.32 ± 0.19 92.29 ± 0.13 74.04 ± 0.14 53.42 ± 0.21

H-1L RIO + MP3D 56.87 ± 0.48 97.33 ± 0.13 73.52 ± 0.29 47.36 ± 0.30

Sinkhorn RIO + MP3D 54.82 ± 0.44 100.00 ± 0.00 72.90 ± 0.30 54.75 ± 0.32

3D-SMNet RIO + MP3D 62.76 ± 0.51 97.38 ± 0.14 76.53 ± 0.31 61.13 ± 0.33

GTbox RIO + MP3D 67.05 ± 0.22 94.68 ± 0.11 77.92 ± 0.16 60.43 ± 0.22
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